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Advanced Textural Representation of Materials Appearance

A multidimensional visual texture is the
appropriate paradigm for physically correct material
visual properties representation. The course will
presents recent advances in texture modelling
methodology applied in computer vision, pattern
recognition, computer graphics, and
virtual/augmented reality applications. Contrary to
previous courses on material appearance (e.g.
[2],[5]), we focus on materials whose nature allows
exploiting of image-based texture modelling
approaches. This course builds on our recent tutorial
held at CVPR 2010 [1].

The topic is introduced in wider and complete
context of pattern recognition and image processing.
It comprehends modelling of multi-spectral images
and videos which can be accomplished either by a
multi-dimensional mathematical models or
sophisticated sampling methods from the original
measurements. The key aspects of the topic, i.e.,
different multi-dimensional data models with their
corresponding benefits and drawbacks, optimal
model selection, parameter estimation and model
synthesis techniques are discussed. These methods
produce compact parametric sets that allow not only
to faithfully reproduce material appearance, but are
also vital for visual scene analysis, e.g., texture
segmentation, classification, retrieval etc.

Special attention is devoted to a recent most
advanced trend towards Bidirectional Texture

Function (BTF) modelling [3], used for materials that
do not obey Lambertian law, whose reflectance has
non-trivial illumination and viewing direction
dependency. BTFs recently represent the best known
effectively applicable textural representation of the
most real-world materials’ visual properties. The
techniques covered include efficient Markov random
field-based algorithms, intelligent  sampling
algorithms, spatially-varying reflectance models and
challenges with their possible implementation on
GPU. Introduced approaches will be categorized and
compared in terms of visual quality, analysis and
synthesis speed, texture compression rate, and their
ability to be applied in GPU.

The course also deals with proper data
measurement, visualization of texture models in
virtual scenes, visual quality evaluation feedback [4],
as well as description of key industrial and research
applications. We will discuss options which type of
material representation is appropriate for required
application, what are its limits and possible modelling
options, and what the biggest challenges in realistic
modelling of materials are.

This introductory course provides a useful
overview for the steadily growing number of
researchers, lecturers, industry practitioners, and
students interested in this new and progressive
computer graphics area.

Pipeline of general material appearance modelling covered in the course:
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2. Presentation slides arranged into eight presentations corresponding to the following
outline of the course (each presentation contains dedicated list of references):

1. Introduction
e Motivation
e Texture definitions/properties
e Light-material interaction
2. Mathematical representations of material appearance
e Taxonomy of material representations (texture, BRDF, SVBRDF, BTF, etc.. )
e Basic principles and differences
e Material appearance modelling pipeline (course outline)
3. Visual texture acquisition
e HDR/Multispectral texture
e BRDF, Pixel-wise BRDF - SVBRDF
e BTF, BSSRDF
4. Static mutispectral textures
e Analysis and modelling approaches
o Intelligent sampling
o Mathematical models (mixture, MRF models)
o Hybrid models
e Applications for visual scene analysis (segmentation, classification and retrieval, etc.)
5. BRDF and spatially-varying BRDF modelling
e BRDF principle and representation
e BRDF compression
e BRDF models (empirically derived, physically motivated)
e Per-texel BRDF modelling (SVBRDF)
6. Bidirectional Texture Functions (BTF) modelling
e Dimensionality analysis
o SVD, PCA
o Psychophysical methods
e Compression approaches
PCA eigen-images
Reflectance models
SVD tensors
Spherical harmonics + wavelets
Data clustering
Layered volumetric models
Vector quantization
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e Modelling approaches
o Intelligent sampling
o Reflectance models
o Mathematical models (mixture, MRF, hybrid, and compound models)
e Selected methods comparison
e BTF editing
7. Visualization & Perceptual validation
e Visualization
o Texture mapping
World vs. local coordinate system transformation
Local texture space
Local texture space interpolation
Measured directions interpolations
Point-light vs. environment illumination
o Anti-Aliasing
e Perceptual validation
o Visual Quality Assessment Metrics
= L1, L2, PSNR, SSIM, VDP
o Visual Psychophysics
= Basic techniques
= Applications
e BTF modeling methods comparison
e BTF compression enhancement
e Gaze attention prediction
8. Applications & Open problems
e Visual scene Interpretation
o Un/semi/supervised image segmentation
o Study of human perception of materials
o CBIR -illumination and view invariant image retrieval
o Medical applications (dermatology, ophthalmology, ...)
o Remote sensing, security, etc.
e Accurate visualization
o Virtual design (architecture, car industry, etc.)
Visual safety applications
Cultural heritage preservation
Film & games industry
3D information systems (medicine, museums)
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Bidirectional Texture Function Modeling:
A State of the Art Survey

Jiri Filip, Member, IEEE, and Michal Haindl, Senior Member, IEEE

Abstract—An ever-growing number of real-world computer vision applications require classification, segmentation, retrieval, or
realistic rendering of genuine materials. However, the appearance of real materials dramatically changes with illumination and viewing
variations. Thus, the only reliable representation of material visual properties requires capturing of its reflectance in as wide range of
light and camera position combinations as possible. This is a principle of the recent most advanced texture representation, the
Bidirectional Texture Function (BTF). Multispectral BTF is a seven-dimensional function that depends on view and illumination
directions as well as on planar texture coordinates. BTF is typically obtained by measurement of thousands of images covering many
combinations of illumination and viewing angles. However, the large size of such measurements has prohibited their practical
exploitation in any sensible application until recently. During the last few years, the first BTF measurement, compression, modeling,
and rendering methods have emerged. In this paper, we categorize, critically survey, and psychophysically compare such approaches,
which were published in this newly arising and important computer vision and graphics area.

Index Terms—BTF, BRDF, 3D texture, surface texture, texture measurement, texture analysis, texture synthesis, texture modeling,

data compression, psychophysical study, light transport.

1 INTRODUCTION

ROBUST visual classification, segmentation, retrieval, or
view/illumination invariant methods dealing with
images of textured natural materials, as well as augmented
reality applications creating virtual objects in rendered
scenes with real material surface optical properties, require
realistic physically correct textures. Such texture represen-
tation considerably depends on the view and illumination
directions and can be efficiently and most accurately
obtained in the form of rough surface textures represented
by Bidirectional Texture Function. Additionally, applica-
tions of this advanced texture representation allow accurate
photo-realistic material appearance approximation for such
complex tasks as visual safety simulations or interior design
in automotive/airspace industry (Fig. 2), architecture, or
dermatology [8] among others.

The first attempt to formally specify real material
reflectance was by Nicodemus et al. [76], who introduced
a novel nomenclature for the Bidirectional Reflectance
Distribution Function (BRDF), although its importance has
long been recognized by artists and scientists such as
Galileo [78]. A four-dimensional BRDF was formalized in
[76] as a specific case of eight-dimensional Bidirectional
Scattering Surface Reflectance Distribution Function (BSSRDF),
restricted to opaque materials. Multispectral BRDF is a
5D function describing how a sample’s color reflectance
depending on illumination and viewing directions. Two
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principal properties of BRDF are view and illumination
direction reciprocity and energy conservation. To represent the
spatial dependencies in surface texture, a BRDF can be
extended to the six-dimensional Spatially Varying BRDF
(SVBRDEF), ie., a set of surface points with mutually
independent BRDFs. However, the two mentioned proper-
ties impose restrictions on SVBRDF use, mostly for
representation of near-flat and opaque materials.

Twenty years later, Dana et al. [10] proposed a more
general representation of sample structure geometry and its
light transport properties [54], in the form of Bidirectional
Texture Function (BTF), which is applicable to most real-
world surfaces. Multispectral BTF is a seven-dimensional
function, which considers measurement dependency on
color spectrum, planar material position, as well as its
dependence on illumination and viewing angles:

BTF(T70i7¢i70U7¢U)7 (1)

where the multi-index r = [ry, 72, 73] specifies planar hor-
izontal and vertical position in material sample image, 73 is
the spectral index, and 6,¢ are elevation and azimuthal
angles of the illumination and view direction vector (see
Fig. 3). The BTF measurements comprise a whole hemi-
sphere of light and camera positions in observed material
sample coordinates according to the selected quantization
steps (see Fig. 4).

The variability of the material sample appearance in
registered and rectified BTF images is illustrated in Fig. 5.

Rough textures provide ample information about local
light field structure as well as the surface relief. Effects
presented in rough textures such as self-occlusions, self-
shadowing, interreflection, or subsurface scattering are
preserved in BTF measurements (Fig. 1). A downside of
using original measurements is their enormous storage size
since an average sample takes several gigabytes.

Methods exist for interactive editing of measured BTF
[47], which enable us to change materials properties by

Published by the IEEE Computer Society
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Fig. 1. Examples of measured BTF samples ((a) ceiling panel,
(b) aluminum profile, and (c), (d) two fabrics) rendered on objects and
illuminated by environment lighting.

several physically nonplausible operators. However, a fast
BTF synthesis method with substantial compression is
essential for many applications requiring accurate real-time
rendering of these data using graphics hardware. In
addition, the original BTF measurements cannot be used
in any practical application due to missing necessary
measurements from all arbitrary vantage points under
arbitrary illumination and due to their small size. Thus, a
seamless spatial enlargement (modeling) method of this,
otherwise, huge BTF data is inevitable.

Contribution of the paper. The main contribution is to
provide the first thorough state-of-the-art overview of BTF
measurement, modeling, and compression methods pub-
lished so far, while selected methods are mutually
compared in several aspects. The only survey dealing with
some parts of the complex BTF acquisition and modeling
process is [72]. This survey provides an elegant, brief
overview of principles of BTF measurement, compression,
and visualization methods and explains issues related to a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31,

NO. 11, NOVEMBER 2009

Fig. 3. Relationship between illumination and viewing angles within
sample coordinate system.

whole BTF processing pipeline from acquisition to optimal
BTF rendering on graphics hardware. Although the survey
provides useful insight into the field of BTF acquisition,
compression, and rendering, it lacks rigorous side by side
comparison of individual BTF measurement setups and
compression methods and only touches on BTF synthesis.
Additionally, the mentioned survey paper does not
comprehensively mention all published methods in the
field of BTF acquisition, compression, and modeling, while
our survey does. Furthermore, a number of novel BTF
acquisition, compression, and synthesis methods have
appeared since publication of the said survey [72].

In this paper, we focus mainly on thorough comparison
and categorization of the BTF measurement systems and
synthesis methods. We put the emphasis on modeling of
BTF data and rigorous comparison of the selected compres-
sion and synthesis techniques. While, in [72], the para-
meters of the compared methods were selected in order to
give subjectively nice results and to fit within current
graphics hardware limits, we have performed a psycho-
physical experiment using several BTF samples. Our
experiment determined BTF sample-dependent parameters
of the selected tested methods providing results visually
indiscernible from the original BTF rendering. The pro-
posed psychophysical testing allowed us to prepare a fair
comparison of the selected BTF compression and modeling
techniques in terms of analysis and synthesis speed,
compression ratio, etc.

BTF applications in computer vision. BTF data are the
most advanced and accurate digital representation of a
real-world material visual properties to date and their
analysis provides abundant information about the mea-
sured material that cannot, for the majority, be attained
using any alternative visual measurements or representa-
tions, e.g., image-based relighting, bump/displacement
mapping, spatially varying BRDFs, etc.

Fig. 2. Examples of leather, fabrics, aluminum, and lacquered wood BTF rendering in Mercedes C Class interior using [25] method (3D model

courtesy of DaimlerChrysler).
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Fig. 4. An example of light or camera trajectory above the sample during
measurement [80].

The nature of BTF data allows their straightforward
exploitation for design and testing of illumination [38], [85]
and view-invariant features and algorithms in numerous
robust texture classification [5], segmentation, and retrieval
applications. Other image processing problems, such as
image restoration, aging modeling, face recognition, secur-
ity, 3D object recognition, content-based image retrieval
[85], and many other tasks can and should benefit from BTF
comprehensive information. An example of usefulness of
BTF data is a study of cast shadows by material structure in
[79] and the analysis of material dimensionality in [82].
Moreover, a recent psychophysical studies of these data in
[22] and [21], together with a study present in this paper,
has shown that analysis of different BTF samples can help
us to understand human perception of different real-world
materials. For all of the above-mentioned tasks, a reliable
and compact representation of massive BTF data is needed.
Such a representation should allow fast reconstruction and
modeling of BTF data, which is the aim of this paper. By
modeling we understand BTF synthesis from its parameters
of arbitrary size, without visible repetitions or other
distortions, visually similar to original data.

Paper organization. Section 2 surveys principles and
properties of BTF measurements systems. Different ways of
representing measured BTF data and categorization of
published methods are explained in Section 3. Section 4
summarizes BTF compression techniques, while the subse-
quent Section 5 deals with more general methods allowing
simultaneous compression and enlargement. Modeling
quality criteria are the subject described in Section 6. Selected
methods, i.e., those that are described in dedicated num-
bered paragraphs in Sections 4 and 5, are further compared
and tested thoroughly with psychophysical experiment in
Section 7 and Section 8 concludes the paper.

2 BTF MEASUREMENT

Since accurate and reliable BTF acquisition is not a trivial
task, only a few BTF measurement systems exist up to
now [10], [39], [50], [70], [75], [80], [89]. However, their
number increases every year with respect to the growing
demands for photo-realistic virtual representations of real-
world materials. These systems are (similar to BRDF
measurement systems) based on light source, video/still
camera, and material sample. The main difference
between individual BTF measurement systems is in the
type of measurement setup allowing four degrees of
freedom for camera/light and the type of measurement
sensor (CCD, video, etc.). In some systems, the camera is
moving and the light is fixed [10], [73], [80], while in
others, e.g., [50], it is just the opposite. There are also
systems, where both camera and light source stay fixed
[39], [70]. The main requirement on BTF measurements is

1923

Fig. 5. Examples of significant material appearance change for varying
illumination/view directions, as captured by BTF for knitted wool and
lacquered wood.
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accurate image rectification, i.e., aligning of texture normal
with view vector, mutual registration of single BTF
measurements for different viewpoints, and sample visual
constancy during measurement. The registration accuracy
strongly depends on positioning errors of the light/
camera used while the visual constancy depends on
stability of material properties during a long measurement
time when exposed to an intensive light source. BTF, if
appropriately measured from real material samples, offers
enough information about material properties, such as
anisotropy, masking, or self-shadowing.

Pioneering work in BTF acquisition has been done by
Dana et al. [11], who measured a large set of various
materials with measurement setup based on fixed light
source and moving camera and material sample position.
The resulting CUReT BTF database has a relatively sparse
angular resolution. Although individual images are not
rectified to frontal view position, the authors provided
image coordinates to allow their further rectification.

Some of material measurements from the CUReT
database were further extended in KTH TIPS database
[40]. The main purpose of the authors was to provide
variations of scale in addition to pose and illumination.
Such a feature is not available in any other BTF database
discussed below. Each measured material is sampled in
three illuminations, three viewing directions, and nine
scales. Measurement was performed by still camera and
ordinary desk light. Authors provide no rectification marks
in the data images, so the database is mainly focused on
material classification applications. A slight variation of this
database is the database KTH-TIPS2 [5], introducing
additional ambient lighting.

The BTF measurement system developed by Koudelka
et al. [50] uses fixed video camera observing material
sample positioned in a computer-controlled pan/tilt head.
The sample is illuminated by an LED array mounted on a
robotic arm. The system offers an impressive angular
resolution and rigorous image registration. However, the
spatial resolution of the resulting images is rather small,
which can negatively impact many BTF modeling methods.

A BTF measurement system based on extended setup of
Dana was developed by Sattler et al. [80]. The main change
is having the camera on a half-circle rail remote-controlled
positioning system. The setup provides rectified measure-
ments of reasonable angular and spatial resolutions. Later
hardware upgrade and improvement of postprocessing
algorithms in this setup suppressed registration errors and
enabled an even higher spatial resolution. The data sets
from this setup were used in our experiments for
comparison of several BTF compression and modeling
methods in Section 7.
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The interesting idea of BTF measurement was presented
by Han and Perlin [39]. Their system consists of a triangular
tapered tube made of mirrors presenting kaleidoscopic
replications of the material surface positioned under the
tube. A fixed camera observes the kaleidoscopic image,
where individual triangular subimages correspond to a
surface observed from different viewpoints. The sample is
illuminated by a digital projector illuminating individual
triangles (i.e., generating illumination positions) in the
kaleidoscopicimage in a shared optical path with the camera,
using a beam splitter. The advantage of this inexpensive
system is subpixel BTF images registration. However, the
spatial resolution is limited by the camera resolution.

A dermatology BTF database, the Rutgers Skin Texture
Database [8], contains various skin diseases taken from the
illumination and camera-controlled positions. They use two
measurement setups: a light arc (quartz halogen or fiber
optic illuminator) and camera mounted on a manually
articulated arm on a tripod. Data sets have either three
viewing positions and 10 illumination positions or four and
eight corresponding positions. The Light Stage measuring
system [15] was designed for similar application. It consists
of a two-axis rotation system in which a small set of
viewpoints is combined with a dense sampling of incidental
illumination.

A similar technique [26] for BTF measurement involves
a set of 5 cameras and a set of 6 lights each affixed to its
own large motorized arc surrounding the object on a
turntable. Additionally, a range scanner is used to capture
3D geometric data of the measured objects, so the
measured samples need not to be planar. This system
provides a relatively coarse angular sampling.

Another BTF setup presented by Dana and Wang [12] is
based on a parabolic mirror in whose focal point is placed
the surface of the observed material sample. Illumination is
introduced by a coherent beam spatially positioned into the
mirror by means of a moving aperture, which enables
convenient automated control for illumination. The sample
surface point reflectance for varying viewing directions is
observed as the image captured by a camera sharing the
same optical path with the illumination beam by means of a
beam splitter. This setup provides very dense angular and
spatial resolutions, but has limited maximal elevation
angles and maximal sample height variations; it also
requires long measurement times due to planar translations
used to scan the surface of the sample.

A novel measurement system of the University of Bonn
[70] uses a dense array of digital still cameras uniformly
mounted on a hemispherical structure. Built-in flash lights
of the cameras are used as light sources. The system enables
subpixel registration of measured images by predefined
image transformations of individual fixed cameras and
provides high angular and spatial resolutions.

A system of similar topology, KULETH, was presented
in [73]. The system is based on a half-hemispherical chassis
containing a spatially uniform array of illumination
sources. The material sample is placed on a turn table
and observed by a camera being positioned using a tilt arm.
Resulting BTF data sets have a very high angular and
moderate spatial resolution.

BTF rendering that incorporates underlying geometry
modeling, using a mesostructure distance function, is
proposed by Wang et al. [90]. The method enables fast
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rendering of mesostructure silhouette in graphics hard-
ware. The setup for simultaneous measurement of distance
function and BTF is presented as well.

Finally, the acquisition system [75] uses a number of
planar patches of the material pasted onto square backing
boards with known dimensions, which are then positioned
to form a pyramid-like target. This setup provides sparsely
sampled BTF measurements of 13 unaligned views from a
variable manual camera position and the light direction is
sampled by moving a hand-held electronic flash. The entire
BTF space is interpolated from these sparsely sampled
measurements by means of histogram fitting and interpola-
tion of steerable pyramid parameters and pixel distribu-
tions. This system introduces large interpolation errors and
requires manual marking of image positions.

The surveyed BTF acquisition systems can be divided
into two categories: systems whose authors enable a wide
research community to use some of the measured BTFs are
more detailedly described in Table 1, while the parameters
of the others systems are shown in Table 2.

The optimal BTF measurement setup design is a tricky
task, heavily dependent on the required accuracy and the
target application of the resulting BTF data. The highest
illumination and view positioning accuracy requires avoid-
ance of as many moving parts in the setup as possible. If
this cannot be achieved completely [70], [39], a simple shift
and rotation elements [12], [73], which are convenient for
easy calibration and error compensation, should be pre-
ferred instead of complicated and imprecise robotic arms
[11], [50], [80].

Data-consistency-critical applications can benefit from
nonuniform sampling strategies. Such systems should
apply more dense sampling in the areas of expected
interest, e.g., near-specular reflection, etc. This approach
should avoid missing specular peaks, etc., due to improper
angular quantization steps. The resulting correct BTF data
can be resampled to a uniform quantization by a global
interpolation algorithm in a postprocessing step if required.
A disadvantage of this approach is a necessity to use
moving elements in the setup due to a variable quantization
step, which is dependent on proximity of view and specular
directions. An interesting case of a continual sampling of
view and illumination directions is shown in [12].

For low-budget applications requiring capture of a
reliable look-and-feel of the material without excessive
accuracy demands, such as Web presentation of materials,
etc., an approximate acquisition setups using only sparse
BTF sampling might be sufficient [5], [40], [75].

As the rectification and registration of individual images
is one of the main sources of error in BTF data, attention
should be paid to design of proper, unambiguous ground-
true registration marks accompanying the measured
material sample [50]. Idealized errorless moving parts or
immovable measurement setups can adopt a predefined
rectification transformation for each view direction, with-
out the need of an additional registration procedure [70].

It should also be noted that the larger the sample to be
measured is, the farther away the light and camera should
be placed to avoid a change of corresponding illumination
and viewing angles over the sample span. Thus, the
maximum required size of material samples should be
considered prior to the setup design. Similarly, a maximum
height of the measured materials should also be considered
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TABLE 1

Comparison of Publicly Available BTF Databases

public BTF databases
parameter CUReT99 [11] | YaleO3 [50] | Bonn03 [80] | Bonn03 ext. | KTH TIPS [40] | KTH TIPS2 [3]
No. of publicly available BTF samples 61 ~17 6 4 10 11
Raw BTF images resolution [pixels] 640480 4802360 30322008 | 45003000 1280 %960 1280 <960
Rectified images resolution [pixels] 4003300 192192 256x 256 800800 <200x200 <200x200
Number of view/illum. positions/scales max.205/55/1 90/120/1 81/81/1 81/81/1 3319 34419
Number of BTF images / material 205 10 800 6561 6561 81 72 or 108
Max. elevation @; / 6, 85 / 859 80° / 759 759 4 750 759 1 75° 45% f 22.59 45° / 22,59
Material sample size [cm] 1012 < 102 1010 1010 nfa n/a
Size of rectified BTF dataset in PNG ~100 MB ~T700 MB ~700 MB ~5 GB ~7 MB ~7 MB
Rectification accuracy [pixels] n/a n/a 5 2 no rect. no rect.
Camera(s) type video video still still still still
Moving [Sample/Camera/Light}(DOF) S(5).C(1) S(2),L{4) S(5).C(1) S8(5),C(1) C(2),L(2) C(2),L(2)
Raw / rectified data publicly available yes / no+ ves / yes no / yes no / yes yes / yes yes / yes
BTF measurement time [hours] n/a ~ 10 ~ 14 ~ 14 n/a nfa
HDR samples - - 4 - - n/a
TABLE 2
Comparison of Different BTF Measurement Systems Parameters
Other BTF measurement systems
parameter New York03 [39] Rutgers04 [12] Bonn05 [70] | KULETHOS [73] | MITO6 [75]

Raw BTF images resolution [pixels] 2048x 1536 nfa (principle) 20481536 800600 n/a

Rectified images resolution [pixels] ~200%200 ~200%200 10241024 460x 460 ~512x512

Number of view/illum. positions 22-79/22-79 continuous 1517151 264/169 13/13-100

Number of BTF images / material 484 - 6241 continuous 22801 44616 1300

Max. elevation 8; / 8, 769 / 769 23-379/23-37° n/a / nfa 90 /7 90" 60" / 60Y

Material sample size [em] 58x5.8 1.1x0.8 ~10x 10 nfa nfa

Rectification accuracy [pixels] subpixel subpixel subpixel nfa nfa

Camera(s) type still video still (151) video still

Moving [Sample/Camera/Light](DOF) none mirror(2),L-aperture(2) none S(1).C(1) L({3)

BTF measurement time [hours] n/a ~ 1 ~ ] n/a ~ 1

when choosing the measurement setup since there can be
principal limitation connected with some methods [12]. A
type of the acquisition sensor also influences the results.
While current video cameras allow fast response [12], [73],
they cannot deliver resolution and color representation as

well as still cameras can [70], [80].
Individual BTF measurements typically suffer from

mutual registration problems. Even relatively well-rectified
and registered data [80] measured with a moving camera
contain registration errors between individual view direc-
tions, caused by inaccurate material sample position, self-
occlusion, etc. A technique to avoid self-occlusion errors is to
employ a separate compression/modeling step for each BTF
subset comprehending all images obtained for a fixed view
position. Such a BTF slice for a view direction w, is a
5D function called Fixed View Reflectance Field R,(ry, 72,73,
0;,¢i), which describes the radiance of the surface point
r = (r1,72,73), where ry,ry are planar coordinates on a

sample and 3 is the actual spectral band.
We used the BTF measurements of Bonn University [4]

as input BTF data for all methods being tested in this paper.
Six different BTF materials were used to test individual
methods. Each data set comprises 81 viewing positions n,
and 81 illumination positions n; (see Fig. 6) resulting in
6,561 images. Spatial resolution of the rectified original
measurements was M x N = 800 x 800 pixels.

3 DATA REPRESENTATION
AND METHODS CATEGORIZATION

The selection of proper representation of BTF data suitable
to intended application or modeling method prior to any
processing may significantly influence their final perfor-
mance. Measured BTF data can be either represented as
rectified original measurements (Fig. 6 left) or in the form of
pixelwise BRDF (Fig. 6 right), i.e., ABRDF,(0;,®;, 0y, ®y).
This BRDF is often called apparent because it can violate any
of the two basic BRDF properties, i.e., view and illumination
direction reciprocity and energy conservation. This beha-
vior can be caused by shadowing, occlusions, subsurface
scattering, and other complex effects occurring in the
material structure.

@
£
=
©
2
i1
=
2
S
c

M
Texture representation

n; illum. directions

ABRDF representation

Fig. 6. Two BTF representations illustrated on [80] measurements.
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Fig. 7. BTF processing scheme with basic taxonomy of compression and
modeling methods.

The first representation enables using methods based
on analysis and synthesis of whole planar texture than can
be extended to cope with texture appearance or its
corresponding parameters change dependently on illumi-
nation and viewing conditions. To this category belong
sampling-based approaches (Section 5.1) or probabilistic
models (Section 5.3).

The second representation (ABRDF) describes in each
image dependency of single pixel on illumination/view
direction. Here, individual images describe the variance of
light/view-dependent reflectance over the measured sur-
face texture. This arrangement produces specularities with
lower variance in the images and allows more reliable pixel-
to-pixel comparison of images than the previous arrange-
ment, where the cast shadows and variable occlusion effects
have to be taken into account prior to any direct compar-
ison. This representation allows us to employ a variety of
BRDF-based models (Section 4.1).

On the other hand, linear factorization approaches (e.g.,
PCA, spherical harmonics) and other general statistical
methods can be used, regardless of the BTF representation
(Section 4.2).

Surveyed methods using either representation can
principally be categorized into compression and modeling
approaches, based on their inherent or absent spatial
enlargement property. While the compression methods
cannot enlarge any BTF measurements by themselves and
just create more or less computationally and visually
efficient parametrization of the original data, the modeling
methods allow unconstrained seamless spatial BTF enlarge-
ment to any required size. Apart from this fundamental
utilization feature, they automatically, and often signifi-
cantly, compress BTF measurements.

A basic overview of BTF compression and modeling
methods and their mutual relation in the BTF processing
pipeline is shown in Fig. 7. Their principles, advantages,
and shortcomings are explained in the following sections.

4 COMPRESSION METHODS

In contrast to other static planar texture representations,
BTF is high-dimensional and massive. To render BTFs on
graphics hardware, their compact representation is needed.
The best currently publicly available raw BTF samples [80]
take up about 5 GB of storage space per material sample and
their size can be even greater when saved in high-dynamic
range (HDR) data format. Thus, a BTF database even for
simple VR scenes can easily reach an enormous data space
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range of hundreds of gigabytes; even then, these samples
cannot be used in any practical applications due to their
small planar size.

Hence, some compression and seamless enlargement
(modeling) method of these huge BTF data sets is inevitable.
Such a method should provide compact parametric
representation and preserve main visual features of the
original BTF, while enabling its fast rendering taking
advantage of contemporary graphics hardware.

Several methods were published for BTF compression
based either on reflectance models, pixelwise BRDF models,
or using an approach based on standard principle compo-
nent analysis (PCA). However, none of these methods
enables also texture synthesis (seamless texture enlarge-
ment) without additional extension, e.g., with the aid of
tiling, spatial clustering, etc. The BTF compression models
compared in this section are described in detail in their
corresponding sections.

41 BTF Compression Based on Pixelwise BRDF
The first group of BTF compression methods represents
BTF by means of pixelwise analytical BRDF models.
McAllister et al. [65] represented the ABRDF of each pixel
in BTF using the Lafortune reflectance model [52]. A similar
approach, which consists of additional lookup table scaling
reflectance lobes and handling shadowing and masking,
was published by Daubert et al. [13]. Spatial inconsistency
of individual pixels in BTF for different view directions led
to separate modeling of individual views (so-called view
reflectance fields R,) in BTF. Malzbender et al. [63]
represented each pixel for a given reflectance field of BTF
by means of a polynomial.

Homomorphic factorization [66], similar to singular
value decomposition (SVD), decomposes pixelwise ABRDF
into several factors of lower dimensionality; each factor is
dependent on a different interpolated geometric parameter.
Compared to SVD, this technique generates a factorization
with only positive factors, enables control over smoothness
of the result, and works well with scattered, sparse data
without a separate resampling and interpolation algorithm.
Efficient multiple-term BTF approximation was suggested
by Suykens et al. in [83]. This model decomposes ABRDF of
each pixel into a product of three or more two-dimensional
positive factors using a technique called chained matrix
factorization. This technique uses a sequence of matrix
decompositions, each in a different parametrization, allow-
ing us to obtain the multiple factor approximation. This
decomposition enables easier factor computation than
homomorphic factorization [66] and its factors have lower
dynamic range, so their quantization into 8 bits for real-time
rendering is much safer. A novel technique for BTF
representation was proposed by Ma et al. [60]. Their
approach is based on fitting the Phong model to pixelwise
ABRDEF. The model’s parameters are then averaged and the
difference between original data and results of the Phong
model, so-called spatial-varying residual function, is ap-
proximated by a delta function whose parameters are
obtained from a system of linear equations. This approach
allows good approximation quality and interactive BTF
rendering frame rates.

Meseth et al. [67] represented BTF by several pixelwise
Lafortune lobes for fixed viewing direction. Due to the
expensive nonlinear fitting of its parameters, the number of
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Lafortune lobes is practically limited to three lobes. The
lobes are only used for luminance values fitting, which
modulates an albedo map of individual color channels. This
arrangement reduces the number of parameters to be
stored, but simultaneously deteriorates approximation
accuracy. In [23], only one lobe is used per color channel.
The obtained results are then corrected by means of
polynomials representing histogram matching functions
between original and restored images.

In [62], a BTF compression method is introduced that
separates geometric information from the reflectance data
combining a layered volumetric model of material structure
and the Lafortune reflectance model. The pixelwise surface
normal vector, reflectance model, and light attenuation
parameters are computed for individual layers separately.
An advantage of the method is a high compression ratio
and easy interpolation of BTF data, the number of layers
and height of the material have to be set explicitly.

A method for intuitive editing of SVBRDF, i.e., tolerable
BTF approximation for flat and opaque materials, was
presented in [53]. This method is based on BRDF
decomposition into a compact tree structure and allows
editing of both reflectance properties specified by decom-
posed BRDF and spatial distribution of individual BRDFs
over the material surface. Advanced interactive editing of
SVBRDF was presented in [77], based on the number of
user-defined editing constraints that are smoothly propa-
gated to the entire data set performing similar editing
effects in areas of similar appearance. An SVBRDF model
based on pixelwise Ward reflectance model effectively
handling directional, anisotropic reflections of subsurface
fibers to preserve an appearance of wooden materials is
proposed in [64]. These methods are limited only to flat
and opaque materials that can be represented by means of
SVBRDF and cannot be used for realistic representation of
any real-world materials.

An approximation of BTF data by means of a shading
map indexed by a Phong-type BRDF model is presented in
[48]. The shading map is acquired as a set of material images
for a fixed viewing direction and a changing elevation of
illumination direction. During rendering, for a given
illumination and viewing direction, the BRDF model is
evaluated and, from the shading map, an image of the most
similar average value is used as a pixel value for a given
planar position. The authors presented also the shading map
compression based on power functions representing indivi-
dual illumination-dependent pixels. This technique pro-
vides reasonable results for small-scale structured and
isotropic materials, but cannot reliably represent the mask-
ing effects caused by a rough material structure.

4.1.1 Polynomial Texture Maps (PTM RF)

In the Polynomial Texture Maps approach [63], the BTF
images corresponding to a fixed view direction are
approximated by means of per-pixel polynomials. This
method models illumination dependence of individual
pixels using the following pixelwise biquadratic formula

Ro(r,3) = ay(r)u’ + al(r)uz + az(r)uyu,
+ az(r)u, + as(r)u, + as(r),

(2)

where u,,u, are projections of the normalized light vector
into the local coordinate system r = (z, y). The set of n; pixels
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is considered as reflectance data, where i = 1,...,n; is the
illumination position index and v is the actual view position
index v =1, ...,n,. The n, = 6 polynomial coefficients ay —
as are fitted in each pixel by means of SVD.

This method enables very fast rendering. However, it
assumes that the modeled surfaces are either diffuse or their
specular contribution had been separated in the previous
preprocessing step. This separation can be quite difficult for
reflectance fields obtained as a BTF slice. For such a
reflectance field, the method exhibits considerable errors
mainly for high grazing angles as shown in [67]. For BTF
rendering, this method requires six parametric images to be
stored per reflectance field R, and color channel.

4.1.2 Polynomial Extension of Lafortune Reflectance
Model (PLM RF)

Single surface reflectance field for a given reflectance field
can be per-pixel modeled using the generalization of the
one-lobe Lafortune model (LM) [52]:

Y, (r,3) & po(r)av (r)ur + a2 (r)us + avs(r)us]™",  (3)

where w;(6;, ¢;) = [ul,ug,ug]T is a unit vector pointing to
light and parameterized by the illumination elevation and
azimuthal angles [6;, ¢;], respectively, (see Fig. 3). For every
planar position and spectral channel in BTF, the model
parameters (p, a1, a2, a3,n) are estimated using t = 2 itera-
tions of the Levenberg-Marquardt nonlinear optimization
algorithm, whose performance strongly depends on chosen
initial values. Unfortunately, reflectance values that are
clearly and completely wrong result from the one-lobe LM
model for certain combinations of illumination and viewing
angles. The polynomial extension of one-lobe Lafortune
model (3) (PLM RF) is proposed in [23], [24], which leads to
the following formula:

Np

RU(T7 Z) ~ Z a’u.i,jY;u(Tv i)ja (4)

=1

where a,;; are polynomial parameters specifying the
mapping function between cumulative histogram values of
image YLL synthesized from one-lobe LMs parameters and
the original BTF image; (n, — 1) is a rank of this polynomial.
For BTF rendering, this method requires n, = 5 parametric
images to be stored per R, and a color channel with an
additional 15 polynomial coefficients per BTF image.

4.2 BTF Compression Based on Linear
Factorization Methods

The second group of BTF compression methods is based on
linear basis decomposition methods such as PCA or
spherical harmonics.

Koudelka et al. [50] ordered individual BTF images into
vectors forming a matrix. The corresponding symmetric
matrix was created and subsequently decomposed using
SVD. The authors preserved 150 main eigenimages for a
satisfactory BTF reconstruction. Vasilescu and Terzopoulos
[86] decomposed the BTF space, ordered into a 3D tensor,
by means of multimodal SVD. This method enables
controllable BTF compression separately in viewing and
illumination axes and demonstrates better performance
than the previous approach using same number of
components. Wang et al. [87] further extended this idea.
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Instead of using a 3D texel-illumination-view tensor, it
stores BTF data directly in a 4D form, i.e., also preserving
spatial relationships in individual BTF images. This helps to
significantly decrease the reconstruction error while main-
taining the same level of compression as in the previous
approach. Although, these methods enable realistic BTF
rendering, they are not suitable for a fast BTF rendering
application since they require the user to compute linear
combinations of high number of eigencomponents. A much
faster approach, applying SVD only on images of separate
view reflectance fields, was presented by Sattler et al. [80].

Another method [42] uses blockwise PCA for scene
illumination dependency coding. The coding is performed
in Y-C,-C; color space and the resulting eigenimages are
further compressed using a combination of cosine transfor-
mation and quantization techniques.

The method described in [93] compresses pixelwise
illumination and view-dependent data by means of
spherical harmonics using up to 25 coefficients. The
coefficient planes are further coded using a discrete wavelet
transformation and the method exploits Y-C,-C; color
space, which allows an even higher color compression.
The authors report better visual results and compression
ratios on image and video data than with standard
compression methods. A very similar approach, applying
a radial basis functions instead of spherical harmonics for
pixelwise compression was introduced in [56].

Ma et al. [61] presented a method (similar to [59]) for
level-of-details representation of BTF aimed at real-time
rendering. This method is based on BTF data decomposi-
tion by means of a Laplacian pyramid. BRDF vectors
corresponding to BTF at a fixed planar position at
individual pyramid levels are further approximated by
PCA. The method enables significant BTF compression and
real-time rendering. The authors computed PCA for
individual reflectance fields instead of the whole BTF data
space. This approach resulted in 16 eigenimages per one
view position, which can easily be interpolated by means of
graphics hardware. Miiller et al. [71] exploited a vector
quantization of BTF data space and each resulting cluster
was represented by a local PCA model. Some of these
compression methods are compared in [69].

An approach to generating a full BTF from its spare
sampling based on a clustering of underlying surface
geometry was presented by Wang and Dana [88]. This
technique estimates a set of geometric texton patches from
example surfaces. These patches are then used for geometry
synthesis of arbitrary view and illumination conditions and
the result is blended with results of the eigenanalysis
method. The method correctly preserves casted shadows in
surface mesostructure, but cannot enlarge original BTF data.

While the above-mentioned methods do not solve the
BTF synthesis problem, these methods are all capable of
compressing the measured BTF space.

4.2.1 Reflectance Field Factorization (PCA RF)

Reflectance Field Factorization [80] is based on computation
of no more than n. principal components per individual
reflectance field instead of the whole BTF space. Individual
images corresponding to reflectance field R, are used as
A matrix input vectors. From matrix AAT of size n; X n;,
the eigenimages £, are computed by means of SVD for
each R, together with the corresponding weights o, and
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mean image p. The reconstruction formula for a reflectance
field is

UTZ

g avk

For the following tests, the number of components 7. for
individual samples was estimated by the psychophysical
experiment, so n.+ 1 parametric planes have to be stored
per R,.

4.2.2 BTF Space Global Factorization (PCA BTF)

In a PCA-based BTF factorization approach, Koudelka et al.
[50] arranged individual color pixels of BTF images of size
M x N in vectors forming matrix A of size 3MN x n,n;.
The principal components are the eigenvectors Ej, of the
symmetric matrix AAT of size n; Ny X nin,. However, the
AAT computational time for larger BTF images can be
unacceptable unless using advanced incremental approx-
imate techniques. Computing the eigenvectors for spatially
nonhomogeneous materials (large samples) often takes
several days. BTF reconstruction is similar to a previous
method stated by the following equation:

) + p(r). ()

N

BTF(r,i,v) Zakszk + p(r). (6)

To obtain satisfactory BTF approximation results, the
number of preserved eigenimages n. was again set by the
psychophysical experiment. The entire BTF space is thus
represented by n. 4 1 parametric planes.

4.2.3 BTF Space Local Factorization (LPCA BTF)

A BTF compression method well suited to contemporary
graphics hardware was presented by Miiller et al. in [71].
This method exploits the fact that high-dimensional data
sets, in this case BTF, show a locally linear behavior. The
authors propose a BTF compression algorithm based on a
combination of iterative vector quantization and local PCA
computed in individual clusters in BTF data. The BTF
space is iteratively divided into clusters using modified
K-means algorithm in the planar BTF space (¢ denotes the
number of iterations). The squared eigenimage reconstruc-
tion error is used as a distance measure in the clustering
process. Each cluster is represented by means of local PCA
in the form of several eigenvectors dependent on illumina-
tion and viewing position. The described BTF factorization
can be stated as

Ne

E am 7

where m(r) is a cluster index lookup table given by planar
coordinates r = (z,y),n. is the number of preserved
principal components representing each cluster, «a; are
PCA weights, Ej are saved eigenvectors, and fi,,( is the
mean vector for the given cluster m(r). The entire BTF
reconstruction together with the illumination and view
interpolation can be implemented in graphics hardware,
which enables fast BTF rendering. This method provides
high BTF compression while ensuring high reconstruction
quality and rendering speed [69]. For the following tests,
the number of clusters ¢ and number of components per
each cluster on n. were set by the psychophysical

BTF(r,i,v) o).k (85 V) F M) s (7)
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experiment. For whole BTF space representation, ¢ cluster
index images are stored together with n. + 1 eigenvectors of
size n;n, and n. coefficient matrices of size n. x dim¢; for
each cluster i.

5 MoDELING METHODS

BTF modeling methods allow seamless enlargement of BTF
measurements to any size required by an application as
well as the reconstruction/estimation of unmeasured parts
of the BTF space. These methods can be divided into three
major groups: sampling-based, reflectance-model-based,
and adaptive-probabilistic-model-based methods.

5.1 Sampling Methods

Sampling methods, which are characteristic for computer
graphics applications, are based either on simple texture
repetition with edge blending or on more or less sophisti-
cated image tiling methods [6], [18], [51], [81], [35] and some
of them are suitable for [55] or can be adapted to BTF
synthesis, e.g., [16], [35], [81]. The most successful sampling
approaches [14], [18], [19], [41], [94] rely on sophisticated
sampling from real texture measurements, which have to be
stored in the texture database. The paper by Dong and
Chantler [16] presents a survey of several sampling-based
BTF synthesis approaches. Based on the amount of copied
data, the sampling approaches can be divided into the per-
pixel nonparametric sampling [19], [84], [91], [97] and the
patch-based sampling [35], [36], [49], [58], [99], [95]. Given a
randomly selected starting block of texture in the image,
they propagate out from it selecting new texture blocks. For
each new block in the image, all neighboring blocks that
have already been generated are checked and the example
image (or images) is searched for similar textures. The
n best such matches are found and then the corresponding
new texture patch is randomly chosen from among them.
The methods [18], [19], [91] all vary in the way the blocks
are represented, how similarity is determined, and how the
search is performed.

A method similar to [89], combining a sparse set of BTF
measurements according to an enlarged material range map
using the [19] algorithm to generate dense BTF data was
developed by Liu et al. [58]. It starts with BTF sample range
map estimation using the shape-from-shading method. The
enlarged range map is used to guide a blockwise sampling
from BTF measurements. The authors tested the method
performance on CUReT data [10] only. This method is slow,
overlapping blocks can potentially generate visible seams,
mutual separation of analytical and synthesis parts is not
possible, and its data compression is negligible.

A modification of this method similar to [71] appeared in
[59]. This method exploits technique of 3D textons, i.e., the
smallest repeatable texture elements, introduced in [57].
Only these textons are then approximated using local PCA
and, finally, used for surface modeling.

The pyramid matching synthesis [41] was generalized
[75] for sparsely sampled BTF data, but the visual quality of
synthesis results restricts this method to textures without
strong spatial characteristics.

The algorithm [84] performs BTF synthesis based on
surface textons, which extract essential information from
the sample BTF to facilitate the synthesis. A 3D texton set is
constructed using the [57] method (BTF space clustering)
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and single BTF pixels are assigned texton labels. The paper
uses a general search strategy, called the k-coherent search,
for constructing a neighbor candidate set. The method is
extremely slow and was tested only on low-resolution
CUReT data [10]. Another sampling-based BTF synthesis
method was published by Neubeck et al. [74]. The authors
apply smart copy-and-paste smooth texture synthesis to
BTF synthesis. The sampling is restricted to similar
neighborhoods by introducing a reasonable subset of
possible candidates (using the Ashikhmin’s candidate
search [1]) from the example image. This algorithm is
iterative and slow, it is restricted to small size neighbor-
hoods, it might blur the resulting texture, and analysis and
synthesis cannot be separated from each other.

A generalization of the image quilting method [18] for
BTF data PCA-compressed spherical harmonics expansion
was presented in [49]. This method maintains all dis-
advantages of the original image quilting method, most of
all in its slowness due to unseparated analytical and
synthetical parts. The image quilting method was also
used in an interactive application [99] allowing the user to
paint BTF patches onto the surface such that the painted
patches seamlessly integrate with the background patterns.
This allows introduction of imperfections and other
irregular features into the BTF surface. However, this
method is extremely slow; it needs 20 minutes for
synthesis of a small texture.

The BTF roller synthesis method [35], [36] is based on the
fully automatic detection of one or several optimal double
toroidal BTF patches per fixed view angle. These BTF patches
are seamlessly repeated during the synthesis step. While the
method allows only moderate texture compression, it is
extremely fast due to complete separation of the analytical
step of the algorithm from the texture synthesis part, which
has negligible computation complexity. The method is easily
implementable in graphical hardware for the purpose of
real-time rendering of any type of static textures.

In [55], BTF tiling method based on Wang tiles [6] is
proposed. The method cuts the tiles in spherical harmonics
BTF representation and allows real-time rendering on an
arbitrary surface. The method also allows users to inter-
actively edit the created BTF tiles.

All of these methods are based on some sort of original
spatial sampling of texture data or its pixelwise parameters
and the best of them produce very realistic synthetic
textures. However, these methods require storage of the
original or transformed measurements (often thousands of
images corresponding to measured combination of viewing
and illumination angles of the original target texture
sample), they often produce visible seams, some of them
are computationally demanding, and cannot generate
textures unseen by the algorithm. Obviously, all texture
sampling techniques described in this section may be
principally applied for spatial extension of BTF data or
their parametric representation; however, their computa-
tional costs may vary significantly and only a few of them
can perform texture rendering or relighting in real time.

5.2 Spatial Enlargement of BTF Reflectance Models

BTF reflectance models are pixelwise generalizations of
BRDF compression models, and as such they represent a
compact representation/compression of BTF measurements
only. However, they can possibly be extended with the aid
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of a parametric space modeling method to allow BTF
spatial enlargement.

A BTF synthesis approach based on combination of
image tiling and a pixelwise reflectance model was
introduced in [95]. This approach involves BTF compres-
sion based on polynomial texture maps [63]. Estimated
resulting parametric images containing polynomial coeffi-
cients are subsequently enlarged by means of the Efros
image quilting algorithm [18].

In [16], a survey of several BTF compression approaches
is presented. The authors have tested an image-based
relighting method [17] based on BTF image reconstruction
from several known BTF images according to Lambertian
reflectance function, overdetermined photometric stereo
based on SVD of 36 images, polynomial texture maps [63],
and, finally, PCA analysis of all BTF images. BTF enlarge-
ment in all of these methods is accomplished again by
means of the tiling algorithm [18].

The polynomially extended Lafortune reflectance model
(PLM RF) [23], [24] was completed with the tiling method
[81] applied to its parametric planes, which enables arbitrary
and high-quality enlargement of BTF measurements.

5.3 Probabilistic Models

Texture synthesis based on probabilistic models [2], [3],
[27], [28], [34], [37], [46], [100] requires no trifling
multidimensional models (from 3D for static color textures
up to 7D for static BTFs). If such an nD texture space can
be factorized, then these data can be modeled using a set
of lower dimensional (e.g., (n — 1)D) random field models,
but in any case, such models are uncommon and suffer
from several unsolved theoretical problems, which have to
be circumvented.

Unfortunately, real data space can be decorrelated only
approximately; hence, the independent spectral component
modeling approach causes a loss of image information.
Alternative full nD models allow unrestricted spatial-
spectral correlation modeling, but their main drawback is
a large amount of parameters to be estimated and, in the
case of Markov random field (MRF) models, also the
necessity of estimating all of these parameters simulta-
neously. Model-based methods published so far are mostly
too difficult to implement in current graphics hardware.

Gaussian mixtures (or their neural networks equivalent,
Radjial Basis Function) were used for monospectral texture
synthesis [98]. Although they are able to model nonlinear
spatial interactions, their parameter estimation and synth-
esis require computationally demanding numerical meth-
ods—the EM algorithm and Markov Chain Monte Carlo
methods. Discrete distribution mixtures of product compo-
nents applied to color texture synthesis (with straightfor-
ward generalization to BTF) were proposed in [27]. The
texture synthesis is based on an easy computation of
arbitrary conditional distributions from the model, how-
ever, the model requires a large training data set, powerful
computing resources, and its data compression is much
lower than that of the subsequent models.

Methods based on different Markov random fields [31],
[29], [32], [30], combine an estimated range map with
synthetic multiscale smooth texture. These methods (except
[32]) estimate a BTF texture’s range map followed by the
spectral and spatial factorization of selected BTF texture
images. Due to the stochastic nature of MRF models, they
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do not reproduce well regular or near-regular structures in
BTF samples; hence, this regular information was intro-
duced into them by means of combination of synthesized
spectral data with a relighted range map. The range map is
estimated using the overdetermined photometric stereo
from mutually aligned BTF images. The overall BTF texture
visual appearance during changes of viewing and illumina-
tion conditions is simulated using either bump or displace-
ment mapping technique. The next step of these methods is
BTF illumination/view (0;,¢:/60,,¢,) space segmentation
into ¢ subspace images (the closest BTF images to cluster
centers) using the K-means algorithm. Eigenanalysis of BTF
data has shown that ¢ =20 is sufficient to represent its
reflectance correctly for most of the samples. The color
cumulative histograms of individual BTF images, in
perceptually uniform CIE Lab color space, are used as the
data features. These subspace images are then spectrally
[29], [30] and spatially [29], [30], [32] decomposed into
band-limited monospectral factors, which are indepen-
dently modeled by their dedicated 2D ([29], [30]) or 3D
MREF ([32]) models.

All statistics in the models are solved analytically in the
form of robust and numerically efficient Bayesian estimators
resulting in a very compact set of parameters. Single band-
limited factors (monospectral or multispectral) are subse-
quently synthesized using this compact parametric set and
interpolated into fine resolution, smooth texture images.
Finally, the required visual appearance of BTF is created by
combining both multispectral and range information in a
bump mapping or a displacement mapping filter of the
rendering hardware.

5.3.1 Gaussian Markov Random Field (GMRF) Model
This method [29] models the BTF subspace images by a set
of dedicated 2D GMRF models and performs spectral
decorrelation of individual subspace images using Karhu-
nen-Loeve (KL) transformation. The resulting monospectral
factors are further spatially decomposed by means of a
Gaussian-Laplacian (GL) pyramid with p levels. Individual
sub-band factors are analyzed using a GMRF model, which
can be expressed as a stationary noncausal correlated noise-
driven 2D autoregressive (AR) process on image grid:

YT = ’YXT + 67‘7 (8)

where 7 is the parameter vector, X, is the corresponding
data vector Y, ; containing data from a symmetric con-
textual neighborhood (CN) of dimensionality n,, and e, is a
random variable with zero mean and a constant but
unknown variance o?. If individual pixel values in CN are
assumed to be conditionally independent, the parameters
and ¢? can be approximated analytically. The toroidal image
lattice is assumed to enable fast subspace factor synthesis
from model parameters using inverse fast Fourier transfor-
mation (FFT). In the remaining part of subspace image
synthesis, the monospectral factors are obtained by the GL
pyramid collapse and inverse KL transformation whose
matrix has to be stored together with GMRF model
parameters. The analysis and synthesis of BTF data space
using this method is very fast, however, use of FFT
somewhat restricts this method’s hardware implementation.
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5.3.2 2D Causal Autoregressive (2D CAR) Model

This method [30], [31] shares a similar processing pipeline
as the GMRF model. However, the method uses 2D CAR
model, which can be described as a stationary causal
uncorrelated noise-driven 2D AR process:

Y, =X, +e,. (9)

Although the meaning of the above notation is the same as
in the previous GMRF model, all parameters can be
estimated without simplifying approximations, e, is con-
trary to (8) mutually uncorrelated and CN is restricted to
either causal or unilateral, i.e., all support pixel values are
known with respect to movement on the image grid.
Contrary to the previous model, the parameters v and o”
can be precisely estimated analytically and the synthesis is
extremely fast by means of subsequent application of (9) on
the image grid while using estimated parameters v and a
white noise generator with variance 2. The remaining parts
of the synthesis, i.e., spectral and spatial factorization are
the same as in the GRMF model.

5.3.3 3D Causal Autoregressive (3D CAR) Model

This MRF-based BTF subspace modeling method [32] avoids
spectral decorrelation errors due to approximate BTF
spectral space decorrelation. The 3D CAR model is able to
represent all spectral correlations between individual sub-
space images. Thus, the method starts directly with building
of the GL pyramid. The model can be expressed as a
stationary causal uncorrelated noise-driven 3D AR process:

Y, = 0X, + E,, (10)

where the CN is restricted to be causal or unilateral, © is the
parameter matrix, and E, is a Gaussian white noise vector
with zero mean and a constant but unknown covariance
matrix X.

The parameters © and ¥ are estimated analytically and
the synthesis is, for an arbitrary image size, again
performed by subsequent application of (10) on sub-band
images’ grid. The synthesized subspace images are
obtained by interpolation of GL pyramid levels. The
synthesis using this model is very fast. However, the
simultaneous interpolation of all 3 x ¢ subspace planes is
more time-consuming and reduces the speed of fast
hardware implementation.

Methods of Markov random field type are based on the
estimated model in contrast to methods of prevailing
intelligent sampling type, and as such they can only
approximate realism of the original measurement. How-
ever, they offer an unbeatable data compression ratio (tens
of parameters per texture only), easy simulation of even
previously not measured BTF images, and fast seamless
synthesis of any texture size.

5.4 Hybrid Methods

A hybrid method of color texture modeling based on
Gaussian distribution mixtures (GM) was proposed [34]
with the aim to combine advantages of both approaches
(sampling and probabilistic modeling) to basic texture
modeling. The hybrid model can be either used to directly
synthesize color textures or to control sophisticated sam-
pling from the original measurement data. In the latter
option, the method can be viewed as a statistically controlled
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sampling. It allows high visual quality of synthetic textures
while requiring storage of only small patches of the original
measurements or even only Gaussian-mixture parameters in
the direct modeling version.

A generalization of the Gaussian distribution mixture-
based method to BTF modeling is discussed in [33]. This
method estimates local statistical properties of the mono-
spectral version of a fixed view target BTF texture in the
form of GM of product components. The synthesized
texture is obtained by means of a stepwise prediction of
the whole fixed view BTF texture subspace. In order to
achieve an authentic BTF texture and avoid possible loss of
high-frequency spatial details, optimally chosen pieces of
the original BTF measurements are chosen in the synthesis
phase. Thus, this BTF modeling method can be viewed as a
statistically controlled sampling. This method allows mod-
erate texture compression, high visual quality, synthesis of
arbitrary large seamless texture, and fast synthesis, but its
drawback is time-consuming analysis and difficult GPU
implementation. An important aspect of the proposed
approach is its possible extension to multispectral or
mutually registered BTF texture images.

The next method [25] performs BTF data clustering in a
spatial domain. Individual clusters (ABRDFs) are stored
and their spatial mapping index/image is enlarged to an
arbitrary size by means of 2D CAR synthesis of pixelwise
normal vectors estimated using photometric stereo. This
technique allows real-time BTF rendering and compression
of about 1:300.

6 MODELING QUALITY CRITERIA

Verification of BTF data modeling quality is a difficult and
still unsolved problem due to the lack of existing
mathematical criteria capable of approximating the human
eye’s perception of textures. Modeling methods directly
approximating single pixels in their original location
(reflectance models without enlargement, PCA-based com-
pression) can be verified using either similar criteria to
those used in image restoration applications (e.g., L, Lo
norms) or using model of low-level human vision [9].
However, stochastic models do not produce an exact
pixelwise copy of an original texture, but are intended to
preserve the major statistical properties of the original BTF
data. The quality of this representation depends on a chosen
model type, its initial parameters, the support set shape and
size, direction of the image lattice movement, etc. For this
reason, any differential metrics based on pixelwise image
comparison between original and estimated texture images
do not make any sense. Unfortunately, no robust criterion
for visual similarity exists. There have been several
attempts at defining texture similarity metrics, e.g., the
work of Julez [43], who suggested a similarity measure
based on the second-order statistical moments. However,
this promising method was questioned later by the same
author in [44], [45] since many counterexamples have been
shown, showing failures of the proposed similarity mea-
sure. Another method based on the same assumption but
using third-order statistics was introduced in [96].
Although this method seems to be more robust, it can only
decide whether two texture images are identical or not. This
method does not provide any similarity measure. So it is
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clear that we are still missing an approach providing an
acceptable and applicable measure of texture similarity.

Currently, the only reliable way is to compare the
overall visual similarity of two textures by independent
observers in a psychophysical experiment. The first
published psychophysical experiment using BTF data
was conducted in [68], where the authors compared
environmentally lit renderings of BTF [71], flat textures
modulated by the Phong BRDF model, and photographs of
a car interior scene. The image sets from these three
techniques were the subject of a psychophysical study with
the group of 22 participants. The authors concluded that
most participants considered the BTF model as identical to
the photographs while the BRDF representation scored
worse. Another experiment with 11 subjects in [22] studied
influence of various uniform BTF data resampling schemes
on perceptual appearance of eight BTF samples. It has
been shown that different materials require different
sampling, generally downsampling of azimuthal angles ¢
should be preferred instead of elevation angles ¢, and that
illumination direction may be sampled less densely than
viewing direction. In [21] was introduced a psychophysi-
cally validated metric for automatic BTF sample size
reduction based on vector quantization of BTF images
controlled by their mean variance.

In the following section, we performed psychophysical
experiment to determine optimal parameter settings of the
relevant tested compression methods, to obtain visually
indiscernible results.

7 SELECTED METHODS COMPARISON

We compared nine different BTF modeling methods. The
categorization of the methods is shown in the overview
scheme in Fig. 7 below the corresponding category blocks.
The first method [81] provides tiling of the original BTF
data. The next five methods are based on pixelwise
modeling. The first three of them (Polynomial Texture
Maps (PTM RF) in Section 4.1.1, Polynomial Extension of
Lafortune Reflectance Model (PLM RF) in Section 4.1.2, and
Reflectance Field Factorization (PCA RF) in Section 4.2.1)
model BTF data for individual surface reflectance fields
separately. The remaining two methods model the whole
BTF space at once (BTF Space Global Factorization (PCA
BTF) in Section 4.2.2 and BTF Space Local Factorization
(LPCA BTF) in Section 4.2.3). The remaining group of three
methods is based on probabilistic modeling (2D GMRF
Model in Section 5.3.1, 2D CAR Model in Section 5.3.2, and
3D CAR Model in Section 5.3.3).

All of the above-described methods were compared to
each other in terms of objective and subjective visual errors,
storage requirements for their parametric representation,
analysis and synthesis time, and computational complexity.

All of the surveyed methods were tested on the Bonn
University BTF data set [80]. For considerable reduction of
the size of parametric representation of the tested pixelwise
methods and simultaneously for enabling seamless cover-
ing of arbitrarily large virtual objects, an image tiling
approach was applied. The approach [81] finds suboptimal
paths in the original data to cut the required set of
arbitrarily contactable BTF tiles. The size of tiles n, x n.
(see Table 7) depends strongly on the type of the underlying
materials’ structure, regularity, etc. All of the pixelwise BTF
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Fig. 8. Example of stimulus showing (a) original and (b) improperly
parametrized sample synthetic leather.

models compared in this paper were further applied only
on these BTF tiles. Six different BTF samples were tested:
knitted wool, fabric dark, fabric light, synthetic leather, leather,
and lacquered wood (see Fig. 11).

7.1 Psychophysical Experiment

For fair comparison of the pixelwise modeling methods, we
performed psychophysical experiment. The goal of the
experiment was to determine optimal methods’ parameter
settings in order to achieve a visual appearance indis-
tinguishable from the original BTF measurements. As the
first two methods (PTM RF and PLM RF) do not allow
straightforward change of parameters, we were able to
control visual appearance by changing the parameters only
for the remaining PCA-based methods (PCA RF, PCA BTF,
and LPCA BTF).

7.1.1 Experimental Data

As experimental stimuli, we used pairs of static images of
size 800 x 800 pixels showing BTF rendered on a sphere for
point-light positioned slightly above a camera. Each pair
consisted of a rendering using the original BTF data set and
one using its model in random order. For different models,
we used different parameter quantization to obtain a
subjectively similar range of visual degradation. The PCA
RF method was used with the following numbers of
principal components per each view direction: 2, 4, 6, 8,
10, and 12. For the PCA BTF method, the quantization of
principal components representing the whole BTF was
chosen as 10, 20, 30, 40, 50, and 60. And finally, for LPCA
BTF, the same parameter per cluster was quantized to 5, 8,
11, 14, 17, and 20. Moreover, the number of clusters in
LPCA BTF method was chosen according to the recom-
mendation of the authors [71], i.e., 32 clusters per BTF size
256 x 256 pixels. This number of clusters was recomputed
for individual tested samples, respectively, depending on
the tile size (i.e., knitted wool 3, fabric dark 2, fabric light 3,
synth. leather 6, leather 8, and lacquered wood 19). In addition
to these three methods, we also added to the experimental
stimuli pairs containing renderings of the methods PTM RF,
PLM RF, and original-to-original data. The described
configuration resulted in 156 stimuli. The background of
the stimuli was set to dark gray. An example stimulus is
shown in Fig. 8.

7.1.2 Participants

Twenty-two observers in two countries participated in the
experiment. All were either postgraduate students or
academic employees working on different research fields.
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Fig. 9. Fitted psychometric functions to data obtained from the psychophysical experiment for six different BTF samples and three different

compression methods (a) PCA RF, (b) PCA BTF, and (c) LPCA BTF.

All had normal or corrected to normal vision and all of
them were naive with respect to the purpose and design of
the experiment.

7.1.3 Experimental Procedure

Each participant was presented 156 stimuli in random order
and asked a yes-no question: Can you detect any difference in
the texture covering the objects? Participants were given as
much time as they needed for their decision. There was a
one-second pause between the stimuli and the average
participant finished the whole experiment in 30 minutes.
All stimuli were presented on calibrated 20.1” LCD displays
NEC 2090UXi and NEC 2170Nx (60 Hz, resolution
1,600 x 1,200, color temperature 6,500 K, gamma 2.2, and
luminance 120 cd/m?). The experiment was performed in
controlled dim office lighting and participants were seated
at 0.8 m from the display and each sphere in the stimulus
occupied approximately 10 degree of their visual angle.

7.1.4 Fitting the Psychometric Data

When participants reported a difference between the
rendered images, their response was assigned value of 1,
and otherwise 0. By averaging the responses of all
participants, we obtained psychometric data relating
average response to variable parameter of BTF model.
There are six such data sets (one for each tested sample) for
each tested method (PCA RF, PCA BTF, LPCA BTF).

The obtained psychophysical data can be represented by
psychometric function ¢(z) [92], which specifies the
relationship between the underlying probability ¢ of
positive response and the stimulus intensity «:

w(x;a,ﬁ,%/\):’y+(17’yf)\)F(a?;a,ﬂ), (11)

where ['is a function with parameters («, () fitting the data, y
specifies the guess rate (i.e., response to zero stimulus), and
the A\ miss rate (i.e., incorrect response for large stimulus).

Psychometric functions were fitted to the measured data
using the psignifit package [92], based on bootstrap Monte
Carlo resampling technique for confidence interval estima-
tion of data fitting. As ' we have used Weibull cumulative
distribution, which is most commonly used in life data
analysis due to its flexibility

x\/
Flz,a,3) =1 — exp { (a) } , (12)
for > 0, where 3 > 0 is the shape parameter and o > 0 is
the scale parameter of the distribution.

The resulting fitted psychometric functions with original
data points for all three tested methods are shown in Fig. 9.
The graphs also include estimated fitting confidence
intervals of individual functions at a response level 0.5.
The function averaging the data over of all samples is
shown as a solid black outline.

7.1.5 Results

To estimate the models’ parameters giving a visual
appearance indiscernible from original BTF renderings,
we used the value of the parameter at which a difference
between rendered images is detected by 50 percent of
observers. Parameter value % can be estimated using

o 8 1—’}/—)\
kp:0.5 - O[“hl(l —0.5— A)a

where o, are estimated parameters of the Weibull
distribution and v and A are estimated guess and miss
rates, respectively. The estimated parameter values for all of
the tested methods, samples and the average values are
summarized in Table 3. These values should guarantee the
same visual appearance of the renderings using the tested
methods as those using original BTF data. These values for
individual samples were used throughout the following
section comparing efficiency of individual methods. The
results in the table confirm the assumption that different
BTF samples require dedicated settings of the tested

(13)

TABLE 3
Estimated Numbers of PCA Components for
Six Different ZBTF Samples with Their Average and
Three Different Tested Compression Methods

Optimal No. of PCA componenis k
method knitted fabric fabric synth. leather lacq. AVG
waool  dark  light  leather waood
PCA RF 6 10 9 11 7 4 8
PCA BTF 61 51 26 52 25 28 41
LPCA BTF | 21 21 13 29 18 14 19
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TABLE 4
Observers Responses on PTM RF and PLM RF Methods
and Guess Rates v for All Tested BTF Samples

Response for stimuli < 0,1 > and the guess rate -y

method knitted fabric fabric synth. leather lacq. AVG
wool dark  light  leather werod

"PTM RF | 0.86 100 100 095 095 1.00 0.96

PLM RF | 027 073 068 091 091 0.68 0.70

¥ 009 009 032 014 014 0.14 0.15

method to provide results visually indiscernible from the
original data. This fact is justified by distinct underlying
structure and surface roughness of the tested samples.

The remaining tested pixelwise methods (PTM RF, PLM
RF) do not provide any dependent parameter, so only their
average observers’ responses for individual samples are
shown in the first two lines of Table 4. The high values for
PTM RF suggest its poor performance for all of the tested
samples, while the values of PLM RF are also often above
average values of the other tested PCA-based methods. The
last row of Table 4 shows measured guess rates v for
individual samples and their averages. These values were
obtained as incorrect responses to identical renderings, both
using original data, and were used for initialization of the
psignifit algorithm.

7.2 Computational and Visual Quality Comparison

Pixelwise computational comparison is possible only for
methods that preserve pixelwise structure of the original
BTF tiles. For this reason, a fair comparison of probabilistic
model results is not possible to be achieved in this way. For
all other methods, the pixelwise error between original and
synthesized BTF images was computed using Mean

knitted wool (5 tiles of size: 25x25)
9 12,
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Average Error (MAE) in perceptually uniform CIE Lab
color space. Comparison of MAE dependence on all 81 view
directions for all tested pixelwise methods and six different
material samples is illustrated in Fig. 10.

Comparison of averaged MAE values for all view
directions, all tested pixelwise methods, and material
samples is presented in Table 5. In the graphs and the
table, we can see a considerable difference between PTM
RF, PLM RF methods and the PCA-based methods, whose
parameters were tuned specifically for each sample by
means of the psychophysical experiment.

For subjective visual comparison, a 3D object was
rendered using synthetic BTF data obtained by the indivi-
dual tested methods. Such renderings are shown in Fig. 11
again for six different tested material samples. As expected,
the visual performance of the tested PCA-based methods
was quite similar due to sample-dedicated parameters set by
the experiment. The PTM RF method apparently misses
specular highlights and PLM REF slightly increases contrast,
which is in accordance with Fig. 10 and Table 5.

7.3 Parametric Representation
Size and Compression

The size of parametric representation of pixelwise BTF
modeling methods depends on a number of stored para-
metric planes. These planes can represent coefficients of
underlying models, i.e., they can be eigenimages, pixelwise
polynomial, or reflectance model parameters. For more
detailed information on parametric representation of tested
methods, see their descriptions in Sections 4.1, 4.2, and 5.3.

Table 6 provides formulas for computation of the storage
size of parametric representation for the tested methods.
The compression ratio of these methods is obtained by
dividing the storage size of BTF tile by the parameter
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Fig. 10. The comparison of individual pixelwise BTF modeling methods for six different material samples in terms of MAE in CIE Lab color space
dependent on viewing direction change (see Fig. 4) 0-the top, 81-the bottom of the hemisphere.
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TABLE 5
Mean Average BTF Reconstruction Error
(in CIE Lab Color Space) of Tested Pixelwise Methods

Mean Average Error in CIE Lab for the tested samples
method knitted  fabric  fabric  synthetic leather lacquer.

wool dark light leather wood
PTM RF 6.13 7.60 535 6.04 5.12 13.74
PLM RF 5.03 7.48 3.84 3.01 275 9.21
PCA RF 36 4.98 2.23 1.81 2.11 5.14
PCA BTF 2.85 4.39 2.19 1.92 2.13 4.53
LPCA BTF | 242 3.88 1.70 1.81 1.81 3.96

storage size of the respective method. Note that we assume
all parameter values as floating-point numbers; hence, by
means of their quantization, we can achieve even higher
compression for most of the tested methods.

The overall comparison of parameters storage size and
compression ratios of all nine tested methods for different

knitted wool fabric-dark fabric-light

PLM RF PTM RF BTF tiles

PCA RF

2DCAR MRF LPCA BTF  PCA BTF

3DCAR

synthetic leather

1935

materials is shown in Table 7. The table summarizes
parametric size and compression ratios of 10 BTF tiles and
their parametric representation using the tested pixelwise
methods. Note that these values are dependent on actual
size of BTF tiles (the fourth row). The third line shows the
compression obtained by direct cutting of BTF tiles from
the original BTF data (800 x 800 pixels). The compression
achieved by probabilistic methods was computed as a ratio
of raw BTF data size and the respective fixed size of that
method’s parametric representation. As expected, the best
compression rates were obtained for smooth (or less
rough) samples (e.g., wood and leathers), while the wool
and fabrics, exhibiting more complex effects, reached
lower values for the same visual quality. Note that the
total compression of original BTF data achieved by
combination of BTF tiling and one of the tested compres-
sion methods is obtained by multiplication of the two
respective values.

leather lacquered wood

BTF tiles

PCA RF

LPCA BTF  PCA BTF

Fig. 11. BTF results of all eight compared methods mapped on a car gearbox console for six different tested materials. Light position: right-back.
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TABLE 6
Formulas Giving Size of Parametric Representations
of the Tested Pixelwise Methods
. where:
BTF tile STy TeTi Ty y
PIM RF Gt 8... no. of spcctml_ cha_m-
PLM RF (vt B nels; n, X n. ... spatial size
PCARE'  (ancnolk 1)+ ki, X We sampk; mi/ng...
" no. of illum./view directions;
PCA BTF stpne(k + 1) + kngng k ne.of principal compes
LECABTE e+ osommll+ 1) nents; ... no. of clusters

Dependency of the tested PCA-based methods compres-
sion ratio on number of pixels in the analyzed BTF sample,
illumination/view direction sampling quantization, and on
the number of the preserved principal components is
shown in Fig. 12. Note that for PCA-based methods, the
parameters obtained from psychophysical experiment,
averaged over all of the tested samples, are used (see last
column of Table 3). From the first graph, it is obvious that
for smaller BTF samples/tiles (less than ~170 x 170 pixels),
the best compression can be achieved by PCA BTF, while
for larger samples, the best suited method is LPCA BTF. On
the other hand, the analysis of such a large BTF by means of
this method can easily take several days. The second graph
shows that by far the best compression with increasing
angular quantization of illumination/view directions is
provided by PCA BTE. When observing the last graph, we
should again take into account the average number of
components set by the psychophysical study (last column
of Table 3).

It is obvious that the size of the parametric representa-
tion is correlated with the size of the original BTF (i.e., the
size of BTF tiles in our case—see the fourth row of Table 7),
so for bigger tiles, the view reflectance field-based models
(PTM RF, PLM RF, PCA RF) easily reach several hundreds
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of megabytes. This is due to storing the parametric planes
for all view directions, i.e., reflectance fields. This huge data
can be further considerably reduced when a certain
parametric space quantization scheme is applied. Fig. 13
is an example of the lacquered wood BTF sample rendering
using the PLM RF method without (a) and with quantiza-
tion (b) using 256 parametric clusters per color channel. The
visual differences are negligible while the size of parametric
representation drops approximately 10 times. The pixelwise
models represent original BTF tiles by means of a set of
parametric tiles of some underlying model and these tiles
are used for BTF data enlargement based on this tiling. A
completely different approach is used for BTF models based
on MRFs (GMRF, 2DCAR, 3DCAR), where only negligible
statistics model parameters are stored in addition to tiled
range and normal maps. The MRF models enable seamless
synthesis from parameters in an arbitrary size, while only
the range and normal map are enlarged using the tiling
approach. Compare performance of the 2DCAR model on /.
wood sample in Fig. 13c.

7.4 Rendering Using Graphics Hardware

To speed up rendering of BTF data (i.e., its reconstruction
from model parameters), the continually growing power
and functionality of contemporary graphics hardware can
be exploited. The reconstruction of BTF data from para-
meters of all of the tested pixelwise compression methods
(PTM RF, PLM RF, PCA RF, PCA BTF, LPCA BTF) can be
performed at interactive frame rates (i.e., ~20-30 frames/s)
when implemented in shaders of low-end programmable
graphics processing units (GPUs) [20]. The same cannot
easily be said about the remaining tested BTF modeling
methods based on probabilistic MRF models (GMRF BTF,
2DCAR BTF, 3DCAR BTF). These methods require causal
knowledge of spatially neighboring data during BTF
subspaces synthesis, which is completely orthogonal to

TABLE 7
Size of Parametric Representation and Compression Ratio of the Tested Methods Compared with Raw and Tiled Original BTF Data

BTF original and parametric representation storage size |[MB] I compression ratio [1:x]
method knitted wool fabric dark fabric light  synthetic leather leather  lacquered wood
raw BTF (PNG) 7509/ 1.0 69287/ 1.0 60041/ 1.0 51864/ 1.0 51959/ 1.0 52055/ 1.0
10 BTF tiles (PNG) 103.4 /7 102.4 89.2 / 132.5 79.4 7/ 146.5 540.2 / 10.9 6755/ 835 24625/ 33
tile size [pixels] 25 x 25 21 x 23 19 x 23 T4 %x 79 B6 x 87 137 x 142
PTM RF 3657 135 282/ 135 256/ 135 3410/ 135 4364/ 135 11346/ 13.5
PLM RF 318/ 143 2497 139 2271 137 2856/ 16.0 365.1/ 160 946.9 [ 16.1
PCA RF 81.0/4 112 7671 70 45.1/ 7.7 6883/ 6.7 5855/ 10.1 9247/ 162
PCA BTF 203/ 238 162/ 232 80/ 41.8 49.6 / 90.6 29.3/197.0 73.4 /1 204.1
LPCA BTF 525/ 94 3557 108 2257 154 210.1 / 31.0 176.6 / 47.0 3254/ 649
GMRF BTF 012/ 0.6107 0.09 /7. 710? 0.06 / 10.010° 0.17 / 3.110% 0.18 / 29104 0.07 / 7.410°
2DCAR BTF 0.09 / 0.810* 0127580 009/ 6710t 0.15 / 3.510% 0.20 / 2.6104 0.07 / 7.410°
3DCAR BTF 0.75 /0110 054/ 131" 044/ Lot 1.07 1 0.510* 0.35 / 1.5101 0.27 / 1.9101
n=n =81 Tile size: 100 x 100 Tile size: 100 x 100, n=n =81
300 —PTM RF 400 __prmrr ol
2259~ PLMRF = PLM RF 2 0
<" --- PCARF (8 comp. Niew) 300 ----PCA RF (8 comp Niew) B |
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Fig. 12. The comparison of compression ratios dependent on BTF resolution, number of illumination/view directions, and preserved principal

components, respectively, for the tested pixelwise compression methods.
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Fig. 13. Example of standard (BTF compression ratio ~1:10) and
clustered (BTF compression ratio ~1: 100) PLM RF model compared
with probabilistic model 2D CAR (BTF compression ratio ~1 : 70,000) for
lacquered wood sample.

contemporary GPU hardware philosophy. This problem
can partially be avoided either by using fragment buffer
objects with rendering-to-texture techniques or by subse-
quent reading of previously synthesized pixels from a pixel
buffer. However, such an operation can be time-consuming
and the final computational time can be similar to standard
CPU computation. On the other hand, this problem can also
be circumvented in the near future with oncoming graphics
hardware using faster memory chips.

In the BTF rendering stage for arbitrary illumination/
view i/v directions, the methods PTM RF and PLM RF
require interpolation only for v directions since arbitrary
directions can be passed as arguments of underlying
functions. In contrast, all the other methods require
simultaneous interpolation of both ¢ and v directions. Such
an interpolation for all renderings in this paper was
performed by means of the three closest barycentric weights
[7], computed separately for the three closest ¢ and
v directions resulting in nine interpolation weights. For
each triangle of 3D object, nine synthesized BTF images are
combined. Although the interpolation requires extra com-
putational time, its weights can be precomputed, stored in a
cube map, and rapidly accessed in shader programs of
graphics hardware.

7.5 Speed Comparison

The speed of analysis and synthesis of individual methods
was tested on a small BTF tile of resolution 25 x 25 pixels.
These tests were performed on CPU AMD Athlon 2.2 GHz,
3 GB RAM and the results are shown in Table 8.

All of the methods are supposed to be applicable in real-
time rendering applications, so the corresponding synthesis
has to be very fast, as shown in the third column of the
table. For this reason, the time for synthesis of whole BTF
space is more or less similar for all the methods. On the
other hand, there are considerable differences in the
analysis time (second column). The longest time is required
by methods modeling all BTF data at once (PCA BTF, LPCA
BTF), so for large BTF tiles representing less spatially
homogeneous materials, the parameters computation can
take many hours. The extremely long analysis time of PCA
BTF method is caused mostly by computation of the data
covariance matrix. However, when a much larger BTF tile is
used, the longest computational times belong to LPCA BTF
method having polynomial complexity with respect to the
number of tile pixels n. The third column of Table 8 shows
estimates of method complexity dependently on number of
pixels n in original BTF tile. There are also other variables
which affect computational complexity for some methods
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TABLE 8
Time Demands and Computational Complexity of
Analysis and Synthesis Stages of the Tested Methods

CPU time [s] approximate operations for

BTF 25x25 pix| complexity pixel synthesis

method anal. synth, | of BTF analysis % + [ =¥
PTM RF 165 ~1 | O(nyni(np+ng)n)| 6 6 0
PLM RF 136 ~1 C)(-n..t.n,-n;“’,m) 7 9 1
PCA RF 10 ~2 | O(ny(ni)*n) 8 8 0
PCA BTF | 3862 ~8 | O(ning)?n) 41 | 41 0
LPCABTF | 1098 | ~22 | O(fnn.n?) 19 | 19 0
GMRF 600 | ~0.04] - - - -
2DCAR 600 | ~0.01] - - - -
3DCAR 1200 | ~0.02] - - - -

as n;/n,, ie., number of illumination/view directions n,,
i.e, number of per-pixel parameters ¢, i.e., number of
clusters and ¢, i.e., number of method iterations. Note that
the complexity stated for individual methods can often be
improved by means of various approximate methods. The
last three columns of Table 8 describe numbers of basic
floating-point operations (addition, subtraction, power)
required by individual pixelwise methods for reconstruc-
tion of one pixel from its parameters for fixed illumination
and viewing directions. Note that explicit values shown in
this Table for PCA-based methods correspond to psycho-
physically set parameters averaged over all samples (the
last column of Table 3).

7.6 Discussion

It is apparent from the previous section that different
methods provide different performance, depending on
various aspects. While the pixelwise-based methods (PLM
RF, PCA RF, PCA BTF, and LPCA BTF) have generally good
visual quality and can provide fast rendering, some of them,
without additional quantization algorithm, have huge
parameter storage requirements (PTM RF, PLM RF, PCA
RF). The methods PCA BTF and LPCA BTF approximating
whole BTF data space at once reach really long BTF analysis
times, which are balanced by their good visual performance
and relatively low size of parametric representation. How-
ever, all tested pixelwise methods alone only compress
original BTF data, and thus, for real modeling, they have to
be combined with BTF sampling-based algorithms. On the
other hand, the MRF-based models (GMRF, 2DCAR,
3DCAR) enable seamless BTF synthesis of arbitrary size as
well as synthesis of previously unmeasured BTF subspaces.
Additionally, they provide us with unbeatable compression
ratios unattainable by any pixelwise-based method. They
provide excellent results for samples with relatively smooth
surfaces and irregular random textures common in natural
materials (see Fig. 13c) while their performance on consider-
ably rough and translucent surfaces is not very convincing.
Regardless of their visual performance, these models are
ideal for BTF recognition or illumination invariant retrieval
tasks as suggested in [38] due to their compact parametric
representation. Mutual comparison of various properties of
the compared methods is given in Table 9.

8 CONCLUSIONS

The BTF modeling approaches published so far can be
categorized into two basic groups—compression and
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TABLE 9
Attributes Rough Comparison of the Implemented BTF Modelst

Original Pixel-Wise Models MRF Models
Observed attribute BTF PTM | PLM | PCA | PCA | LPCA | GMRF | 2D CAR | 3D CAR

Tiling RF RF RF BTF BTF BTF BTF BTF
seamless enlargement Yes- - - - - - Yes Yes Yes
compressi()n ratio . # & % % % FERE EE TS EHES
]-eguhr San]ples representation e g gl | deRdk | kRmg R =% b *4
irregular samples representation * * H * * * ik bkdk ik
pixel-wise features representation gisdich i fids Trk g e ¥ ¥ *
reflectance variations represent. Hrbka * i Skt ok ok b e it
ease of GPU implementation *EEE R FE *EE # ki * % *
analysis speed ek & Aok g * ok H Ak Ak ik
direct illumination interpolation - Yes Yes - - - - - -
separated analysis and synthesis Yes Yes | Yes | Yes | Yes Yes Yes Yes Yes
unseen data modelling - No No No No No Yes Yes Yes
block-wise processing Yes Yes Yes - - - - Yes Yes

7 the more stars the better the model is in that atribute

modeling methods. The modeling group can be further
classified into sampling methods and random-field-based
models. Finally, a hybrid combination of both basic
approaches is possible as well. Our experience, similarly to
other texture analytical tasks, shows that there is no ideal
BTF modeling approach. Some pixelwise compression
methods produce excellent visual quality but their compres-
sion ratio is only mild, while random-field-based models
sometimes compromise visual quality but offer extreme BTF
compression and very fast analysis as well as synthesis.
Several models can easily be implemented in graphics
hardware or paralleled. Some methods even allow us to
model/interpolate previously unseen data (by modification
of the corresponding parameters) or reconstruct parts of an
unmeasured BTF space. The results of selected compression
and modeling methods demonstrate their performance for
six tested BTF samples. Furthermore, the performed
psychophysical experiment showed that to obtain objec-
tively the same visual performance, different BTF samples
require different parametric settings of the tested methods.
Finally, it has to be noted that there is no ideal universal BTF
model and the most suitable one has to be chosen depending
on the intended application (real-time, compact data
representation, fast GPU implementation, visual quality,
etc.) as well as on the specific material sample.
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Taxonomy of

General ReflectaugEisuy Material Appearance Representations

General model of light-material interaction Homogeneous ¢ Textured materials _ Complexity of
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BRDF

Bidirectional Texture Function

* lllumination and view dependent reflectance

* Helmholtz reciprocity
BRDF(X 0:.0:.0u,0,) = BRDF(A. 0, 04,05 0;)
* Energy conservation

Jo BRDE(X, 6,0, 8y, ) cos b,dw, < 1

Haind| & Filip: Material Appearance

* One of the best
representations of
textured materials
appearance ‘

* Massive data (GBs)

— difficult direct

o g
. ~ <+ ". .
.. 7 ® ¥ 8
application BTF index: D
J@:

Includes: inter-reflections, sub-
surface scattering, local masking
and shadowing

BTF image

4

Bidirectional Texture Function

Bidirectional Texture Function

single texture bidirectional texture function
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single texture bidirectional texture function
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Bidirectional Texture Function

Material measurement ﬁ Material Visualization

E\V'F ;n;ex: | @ w
i
©

BTF()\, 71,72, 05, ©is O, 991:)
Spectral Spatial Illumination & view

direction
dependency

Tutorial Outline

Perceptual /4
Validation 4

Appearance Static BRDFs &
Acquisition Textures SVBRDFs

Texture
Applications

Recent survey [Filip&Haindl, IEEE TPAMI 2009]
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Outline - Appearance Acquisition

° BRDF

Bidirectional Reflectance Distribution
Function

* SVBRDF

Spatially-Varying BRDF

- BTF

Bidirectional Texture Function

* BSSRDF

Bidirectional Surface-Scattering
Reflectance Distribution Function
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BRDF Measurement Setups Taxonomy

BRDF()\ 9?7 Pis 9'115 <i:)’l!)

5 dimensional data & 4
dimensions depend on
camera, light & sample
positioning

Measurement setup with 4 mechanical degrees of freedom:

sample/light/camera 1/2/1
sample/light 2/2 + many views at once
light/camera 1/1 + defined shape
compromise accuracy measurements

Isotropic BRDF (4 dimensional): BRDF(X, ;. 0., : — ¢y) 2
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BRDF Sample Acquisition

Sequential sampling of 4D space &

moving sample, light & camera

[Murray & Smith JIES 90]

[White et al. JAO 98]

[Murray & Smith ©0SA 1990]

White et al. ©OSA 1998] J
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BRDF Sample Acquisition

BRDF Sample Acquisition

Mirror-based setups Mechanical DOF reduced by

multiple-views in mirror image
(directional illumination)

Mirror-based setups Mechanical DOF reduced by

[Mukaigawa et al. ACCV 07] multiple-views in mirror image
| (projected illumination pattern)

Mukaigawa et al. ©Springer 2007] » Camera

[Ward CG 92] [Dana et al. ICCV 01] ‘
Side View e ‘l‘ [Ghosh et al.ICCV 07]
s oo G v sty : B e soee
» Beam Splitter
colfmared
light
S N\ i
i \ *Mirrored Parabola
reflected rays \
BUSE \
nit-silvered o /s \-+Mirrored Dome
plassc > /AT [l \
P H [Ghosh et al. ©IEEE 2007]
Dana & Wang ©0SA 2004] £\ 3 \\ |
[Ward ©ACM 1992] ana & Wang © Rl -~ — \
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BRDF Sample Acquisition BRDF Sample Acquisition

Image-based setups Mechanical DOF reduced by defined Image-based setups Mechanical DOF reduced by defined

Varying incoming sample shape (orientation) [Marschner PhD 98] sample shape (orientation)
/outgoing directions

over cylinder image @ [Marschner etal. JAO 00]
;@'z object of estimated geometry

[Lu et al. JAO 98]

Spherical homogeneous samples

[Ngan et al. EGSR 05]

—

[Matusik et al. TOG 03]

[Lu et al. ©OSA 1998]
Haind| & Filip: Materials

Ngan et al. OWilley 2005
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BRDF Sample Acquisition Spatially-Varying BRDF Measurement

Fast measurement, compromise accuracy, limited:
* number of illumination/sensing elements
* viewing/illumination angles range

i SVBRDF(/\I’ Y, 9ia99ri~,9u-,<ﬂu)
¢ + 7 dimensional data & 4 dimensions depend on
camera, light & sample positioning

'« Restricted to opaque, flat surfaces where BRDF
reciprocity holds

[Lan et al. CGF 10]

[Ben-Ezra et al. CVPR 08]
o] =

Measurement setup with 4 mechanical degrees of freedom:

samplelghtcamera 1721

e sparse view/light sampling 2/2 +
known geometry

& \ \
\ \ Condenser . X
R \\_amyLens Light-stages many lights/cameras 2/2
ource . .
L / Portable s registration of BRDF measurement to
[Ben-Ezra et al. ©IEEE 2008 LED S . .
I — Waterial sparse object images
Source f'.\ Surface
Haindl & Filip: Materials Appearance ' [Lan et al. ©OWilley 2010] Haindl & Filip: Materials Appearance

SV-BRDF Sample Acquisition
[Holroyd et al. TOG 10] Spatially-varying reflectance from several images of known

[MCA".iSte{' GH 02] Simultaneous measurement object geometry (laser scanner, photometric stereo,
*  moving light, tilting sample of geometry and SVBRDF structured-light)

SV-BRDF Sample Acquisition

[Lench et al. TOG 03]

Adaptive view
planning algorithm
proposed

Lensch et al. ©ACM 2003]
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SV-BRDF Sample Acquisition

t stages

SV-BRDF Sample Acquisition

Facial SVBRDF measurement
* 156 lights, high-speed camera < 150 lights, 16 cameras

e structured light for geometry
capture
[Weyrich et al. SIG 06]

VA7 SN

Debevec et al. ©ACM 2000]
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[Weyrich et al. ©ACM 2006

BTF Measurement Setups Taxonomy

BTF()‘* 71,72, 9i~, Pis 91:: 501)

7 dimensional data &
4 dimensions depend
on camera, light &
sample positioning

Measurement setup with 4 mechanical degrees of freedom:

| 3/1(1/1
Moving Sample & Camera Samrsaer{yc?i?het':; /1 (/1%
Moving Sample & Light sample/light 2/2

reflectometers Moving Sample, Light & sample/light/camera 1/2/1
Camera

N m sample 1 + many lights &
Mirrors, Moving Sample cheras Ve
o lights &
domes Static Measurement Setups ma?ryeglg/v;tuacl;meras)

Haind| & Filip: Materials Appearance

BTF Sample Acquisition

Gonioreflectometer — Moving Sample & Camera .
[Sattler et al. ©Willey 2003,

Bonn University
[Sattler et al. EGSR 03]
Database:
10 samples (4 HDR)
Illu./View directions:
81/81=6561img.
Max. illu./view elev.:
75°/75°
Rectified images:
800 x 800 pixels
Measurement time:

~ 14 hours
Haind! & Filip: Materials Appearance

http://btf.cs.uni-bonn.de/

Portable setups

Fast measurement, compromise accuracy:

* Sparsely measured BRDF registered to measured object
reflectance map (single view, many lights)

* Anisotropic BRDFs

[Dong et al. SIG 10]
Sido Light Boam
Background

. Environment
.. Lighting

e (Mo, N
[ e 5
s Tere \

Pinhole

Material
Surface —_—
Material Sample (@

Ocular Condenser Lens Field Condenser Lens

Dong et al. ©ACM 2010]
Reflectance-map ”)
measurement

BRDF measurement
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BTF Sample Acquisition

CURET-Columbia&Utrecht |/
University
[Dana et al. ACM TOG99]

Database: 61 samples
Illu./View directions:
55/max.205 = 215 img.
Max. illu./view elev.:
85°/85° 5
Rectified images:
400 x 300 pixels
Measurement time:

n/a
http://wwwl.cs.columbia.edu/CAVE/software/curet )
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BTF Sample Acquisition

Gonioreflect Moving Sample & Light

|Ya|e University [Koudelka et al., TEXTURE 03] |

Database: 17 samples
Illu./View directions:
120/90 = 10 800 img.
Max. illu./view elev.:
80°/75°
Rectified images:
192 x 192 pixels
Measurement time:

~ 10 hours
http://vision.ucsd.edu/kriegman-grp,
Haind| & Filip: Materials Appearance =




BTF Sample Acquisition

Mirrors — Moving Sample & Lig

Rutgers University
[Dana & Wang, JOSA 04] [ iy g cotmrsteos sy

Database: n/a
Illu./View directions:
continuous
Max. illu./view elev.:
23-37°/23-37°
Rectified images:
~ 200 x 200 pixels
Measurement time:
~1 hour

Material moves below mirror

Haind| & Filip: Materials Appearance

BTF Sample Acquisition

Gonioreflectometer — Moving Sample, Light & Camera

UTIA AS CR
[Haindl & Filip 11]

Illu./View directions:
arbitrary/arbitrary
Max. illu./view elev.:
90°/90°

Rectified images:

2000 x 2000 pixels
Database: coming soon
Measurement time: ~13 hours

* Spectral & HDRI measurements
* Arms angular accuracy: 0.03°
* Resolution: over 300 DPI

4
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BTF Sample Acquisition

BTF Sample Acqusition

Gonioreflectometer — Moving Sample & Cam

KULETH system
[Neubeck et al., TEXTURE 05]

Database: n/a
Illu./View directions:
169/264 = 44 616 img.
Max. illu./view elev.:
90°/90°
Rectified images:
460 x 460 pixels
Measurement time: n/a

Neubeck et al. 2005]
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BTF Sample Acquisition

Mirro Static Measurement Setups

New York University
[Han et al., ACM TOG 03]

Database: n/a
Illu./View directions:

22-79/22-79 =
484 — 6241 img.
Max. illu./view elev.:

76°/76°
Rectified images:
~ 200 x 200 pixels
Measurement time:

~1 hour
Haindl & Filip: Materials Appearance

BTF Spectral Measurement

me — Static Measurement Setups

Bonn University
[Miiller et al. 05]

Illu./View directions:
151/151 = 22 801 img.
Max. illu./view elev.:
n/a
Rectified images:

1024 x 1024 pixels
Database: n/a
Measurement time:

~1 hour

Haind! & Filip: Materials Appearance

¢ Most system measure data in 8-bit/colour channel
* University Bonn Database (UBO) — 4 HDR architectural samples

* Materials appearance depends on light’s spectrum & need for
full spectral measurements.

e [Lyssi 09] — full spectral BTF measurement and calibration on
[Sattler et al. 03] setup.
— Spectral Filter & 30 wavelength bands (430 — 720 nm)
— 30 x 81 x 81 images & enormous
measurement times (3 days)
— sample in OpenEXR = 1 TeraByte
* [Rump et al. 10] — GT data for
multispectral BTF

Sattler et al. ©Willey 2003]
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Spatial Reflectance Data Rectification

* Registration and resampling images of different views & same
size images, surface normal aligned with viewing direction
Using:

Registration marks

Intersection of sample borders

Predefined geometric transformation (static setups)

Lines detection
- Hough transform

Haind| & Filip: Materials Appearance

Spatial Reflectance Data Registration

Contrary to SVBRDF, BTF face problem with rough structure samples
« Different views & Pixel-wise misalignment, due to occlusion

- Solution & process individual views separately

Courtesy of University of Bonn

BTF - no geometrical information & no material profile at object edgs

Measured Data Representation

, view. directions

n

M n; illum. directions

Texture representation ABRDF representation

* Only images for the same view * llluminations/views aligned
are correctly registered .

* Shadows/occlusion compensation
required prior to processing

Highlights positions fixed
* Easier pixel-wise comparison.

9
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Apparent BRDFs

Apparent BRDF # BRDF (masking, occlusions, shadowing, etc..)
possible violation of: Helmholtz reciprocity & energy conservation

n

n

BSSRDF Measurement

BSSRDF Measurement

Bidirectional subsurface-scattering reflectance distribution function
BSSRDF(A, i Yi- Lo Yor Oix @iy Ou 00)
[Nicodemus et al. 77]

BTF includes scattering information,
but difficult to separate

* General 9 dimensional data & often called as reflectance fields

* Describes light transport (scattering) in material structure
between any pairs of incoming outgoing rays

* Translucent materials
* Direct measurement very sparse due to high data dimensionality

)
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[Goesele et al. TOG 04 ] — laser-based sparse spatially varying

?

subsurface scattering measurement
HDRCamem\‘ &
Laserprojector u
[Goesele et al. ©ACM 2004] ]
Turntable with Object

[Tong et al. TOG 05 ] — BTF combined with local laser-based
subsurface scattering measurement
(% (‘

;‘

BTF+local scat. BTF

BTF+global scat.




BSSRDF Measurement Volumetric Models Acquisition

* Models of subsurface scattering in homogeneous dielectric [Zhao et al. 11 TOG] — material geometry scanned by
materials are available, measurement of models parameters: X-Ray Micro CT scanner (resolution 10242).
[Jensen et al. SIG 01] — dipole model of dielectrics, validated by Scattering information transferred to volumetric

scattering measurement of focused beam .
& data by matching of several samples photographs.

V] realistic appearance

Without With
scattering scattering assumes single material, lengthy rendering, limited dynamic
model model range of the scanner

j [Jensen et al. ®ACM 2001

Diffuse/specular reflectance components separation
(polarization/color/illum. patterns) [Shaffer 85], [Nayar et al.
JCV 97], [Nayar et al. TOG 06] = diffuse component represents
light refraction inside material structure & fitting scattering
models parameters to diffuse component.
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Zhao et al. ©ACM 2011]
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Conclusions on Appearance Measurement

BRDF measurement

Measurement setup design depend on
the required application & accuracy &

* Murray-Coleman, J., Smith, A.: The automated measurement of BRDFs and
their application to luminaire modeling. Journal of the Illuminating

time & price & spatial / angular / spectral resolution. Engineering Soclety pp. 87-99 (1990)
* Images rectification and registration &source of errors * White, D.R, Saunders, P., Bonsey, S.I., van de Ven, 1., Edgar, H.:
: Reflectometer for measuring the bidirectional reflectance of rough surfaces.
* High rectification accuracy &> no moving parts or Journal of Applied Optics 37, 3450-3454 (1998)
simple mechanical elements. * Ward, G.: Measuring and modeling anisotropic reflection. Computer
* Maximum sample size = influences distance of light & Graphics 26(2) (1992)
camera (directiona| |ight, orthogra phic projection). * Dana, K.: BRDF/BTF measurement device. ICCV 2001, vol. 2, pp. 460-466

. N . . (2001)
* Maximum sample height & influences selection of
sample height *  Mukaigawa, Y., Sumino, K., Yagi, Y.: Multiplexed illumination for measuring

measurement teChn.Igue (e'g'. SV.BRDF VS. BTF)' . BRDF using an ellipsoidal mirror and a projector, ACCV'07, pp. 246—-257
° Data'?onS'Sten(}Y'c”t'ca| a.ppllcatlons & non-uniform or * Ghosh, A, Achutha, S., Heidrich, W., O’Toole, M.: BRDF acquisition with
adaptive sampling strategies. basis illumination. ICCV 2007, 1-8 (2007)
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Volumetric Model Acquisition

* S.Zhao,W. Jakob, S. Marschner, K. Bala, Building volumetric appearance
models of fabric using micro CT imaging, ACM Trans. Graph., 30(4), 2011
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* Motivation

* Parametric Models

¢ Sampling Methods
— Tiling, Roller

* Markov Random Models
— Wide-Sense Markov Models
— Strict-Sense Markov Models
— Compound Model

* Mixture Models

* Hybrid Model
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Motivation

Motivation
Image Modelling

* image texture & limited spatial resolution &
disturbing repetitive effects when mapped on large
objects.

Haind! & Filip: Materials Appearance

* general model
— image analysis
* (un/semi)supervised segmentation, retrieval
* inhomogeneity (defect/edge) detection
* motion detection
— image synthesis
« static / dynamic texture enlargement

editing

restoration
* missing data reconstruction (film scratches)

image compression (storage, transmission)
— description of arbitrary complex spatial relationship

— a general multivariate distribution simulation
Haind| & Filip: Materials Appearance

Motivation

Image Modelling

* image modeling is extremely difficult
— Still image variability
Huge number of images 2"V ! eg.
n=8 N=M=512, 1 =3 — ~ 1018997
— Dimensionality
4D —video, 7D —still BTF ~ 1TB, 8D — dynamic BTF, 16D GRF
— Large still images, e.g., a Landsat scene:
185 x 185 km (2800 x 2800pixels), 7 spectral bands,
8 bits/pixel, 460 Mbit
— 4D images (dynamic), e.g. ~ 1GB a movie in TV quality

Haind! & Filip: Materials Appearance

Motivation

1-Dimension Versus n-Dimensions

* n-D non trivial generalization of 1-D random processes
XICausality:
1-D natural
n-D artificial (no natural order)

XINo n-D factorization theorem (general 2D random field (RF) no
unilateral representation)

XI1D techniques often intractable in n-D

e 2D ideas & better results than 1D & 2D
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Texture Parametric Models

* Random Mosaic Models

* Periodic Tesselated Models

* Syntactic Models

* Fractal Models

* Second-Order Statistical Models
* ARMA, MA

* Markov Random Fields (MRF)

* Mixture Models

* Reflectance Models (BTF)
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Texture Parametric Models

Random Mosaic Models

* Synthesis
— Region tesselation into cells
— Cellclass assignment P, .... Px
* Analysis
— Variogram
V(d) = B{(Y; - Y’}
V(d) 20%(1 — P(d))
P(d) = P(Y; =w,Yra=w)

— Poisson line model
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Texture Parametric Models

Fractals

+ a deterministic fractal - a bounded set in a Euclidean n-space
is self-similar is the union of distinct (non-overlapping)
copies of itself, each has been scaled down by a ratio 7.

 fractal dimension estimation [Voss 71]:

N
1_,
E{NL)}=M>» —P(m,L)x L7P
Ny =M Y P 1) x
* P(m, L)- probability that m points of an image surface are
within a box of side length L, M number of points in image.

natural textures requires stochastic fractals & difficult fractal
dimension estimation

two very different textures can have similar fractal dimension
fractal synthesis - limited textures
M scalability _pearance

Texture Parametric Models
Fractals

ChaosPro — volcano Brownian fractal

jpearance

Texture Modelling Taxonomy

Texture Modelling

Mathematical
Models
Sampling

Techniques A
Statistical

Models

Hybrid & Comﬁbund l Mixture

Markov Random
Models Models Field Models

texture Mapping + rendering
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Texture Modelling

* Sampling-based approaches
— Texture Tiling and patching
— Roller
* Model-based approaches
— Reflectance Models
— MRF-based models
* Multiscale 2D / 3D (non)causal autoregressive
« Multiscale 2D / 3D Gaussian MRF
— Mixture Models
* Discrete / Gaussian / Bernoulli
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Modelling

Mathematical

odels

Sampling

Techniques

Haind| & Filip: Materials Appearance

Sampling

Image Sampling Approaches

* [Heeger & Bergen 95] — pyramid-based texture analysis &
synthesis

* [De Bonet 97] — samples from conditional distribution over
multiple scales

* [Xu et al. 00] — Chaos mosaic: fast procedural texture synthesis
* [Efros 01] — Patch-based synthesis
= Image Quilting
* [Wei & Levoy 01] — Tree-structured vector quantization
constrained by a local geometry
* [Ashikhmin 01] — ... modification by irregular regions copying
* [Zelinka & Garland 03] - Fast synthesis using jump-maps
* [Kwatra et al. 03] GRAPHCUT & universal spatio- tempo_ra_l t_iliﬂg_
* [Cohen et al. 03] — Wang tiles & aligned e
to match edge color HJLg I_-_I_I-

Haind| & Filip: Materials Appearance [Cohen etal. ©ACM 2003] ——— o

Sampling

Roller

Texture Sampling

off-line
| =
' Patches i Random
Measurement Selectxcn ‘ Generator|
Quilting Tilling SyRthesis ‘
Source O
texture D
ot :

Target Iﬁ —lh. I
texture ? || v

-~
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Sampling

Somol&Haindl 05] - looking for sub-optimal path in error-map of
overlapped texture reglons + changing tile contents

‘& y -l
\v‘* -

target error map target

image before  overlap region with minimum stitch image after

stitching error path stitching

index malrix £ ¢ synthesised
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Sampling
Roller

Haindl &Hatka 05]

*  Principle: double toroidal tile

*  Algorithm:
—  Analysis
1. Find the optimal horizontal and vertical overlaps h,"7 e
2. Find the optimal vertex .

3. Search for optimal horizontal and vertical cuts starting from r*
with final points in the corresponding rectangle vertices.

4. Create the double toroidal texture tile.
—  Synthesis — bidirectional repetition
NI & T

PO H | A
I T
A\ NEA
S |~

[Haindl & Hatka 05]
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* Tile —optimal overlap
{1 ‘;} o= (Y- Yr+[s\"—h,‘ﬂ])2 Vrel, .
W, R )
r o= (Y- Yr+[o.va])z Vr e I,

v* Iu}n{%v; Uf} I (17 h) X (1,...,]\4) 3
I, = (1,....N)x(1,...,v) .

h*

|

3

ES
I

Vrely

Il
Il

e Tile —optimal cut
— dynamic programming (fixed starting points)
h* __ 1 hF e h* h* h*
¥ = ¢y +min {‘1’7‘—[1,1]» kIJ'rL—[O,IJ’ \Ijr+u,—1j}
¥y = ) +min {\PL[M]* Vo) \Ifﬁfﬂ,l,l]}

i
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Sampling
Roller - examples

Sampling
Roller - examples
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Sampling

Roller - limits
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[Efros &
Freeman]
image
quiting

Summary

V1 High visual quality

V] Often numerically simple (GPU)

Low compression

Observable repetitions (low frequencies, large textures)
Unseen textures / view / illumination angles impossible

Probabilistic Model
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Probabilistic Texture Model

Texture Modelling

Mathematical

Sampling

Techniques

Models

Statistical
Models

Markov Random
Field Models
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off-line

Spatial 2/3D

Factorization

Spectral
Fac(oriza(iong

Factor Synthesis

Spectral ‘
Defactorization

Spatial 2/3D
Defactorization

Optimal
Model
Selection
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Markov Random Fields

Markov Random Fields

* Random Field (RF) {Y,}r € I countable (no continuous) index set
* RF with { denumerable | real } state space w
{2 the space of all configuration from w
* p probability measure on 2such that
p(Y; re A)>0 VACI

+ B minimal complete o -algebra
* RF: (€, B,p,{Y;})

* Markov Random Field (MRF) + Markovianity condition:
p(Y; | Y, Vs € I\ {r}) = p(¥; |Y, Vs € I,)
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M generality - any nD RFisa MRF I, = I\ {r}

1 Consistent global and local representation

M regular, irregular (graph), finite, infinite index sets

V] Bayesian formulation of image processing tasks

VI simpler MRF models can be combined (compound MRF)
1 Global optimization tool

Several open problems
Demanding Markov chain Monte Carlo methods
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Markov Random Fields
Multidimensional Random Fields

Smooth 2D CAR Texture Model

* 3D static multispectral image,

* 4D colour video (dynamic texture),
* 7D static BTF texture,

* 8D dynamic BTF texture.

* nD models
- 3D

* approximations of nD model with n x (n — 1)D models
approximation error

* fixing some indices

[XImodeling restriction, huge parametric space
Haind| & Filip: Materials Appearance

Synthesized
Original

suo-space
sub—space image

image ANALVS\S ) [» | (SYNTHESIS B
SpaclraJ 2D CAR model T E ! Model Spatial Spectral
decovrs\ahon facmﬂﬂﬂﬂﬂ" param, estimation ¥ § synthesis \deladonsahon correlation
=
—
—> B
—

Decorrelated GL Model

Synthe5|zed Joined Synthesized
color pyramids parameters  pyramids sub- color
channels levels channels channels

Model’s products

4
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Smooth 2D CAR Texture Model

Slendl it
irage ANALV\&IS L/ o | (SYNTHESIS Y
Spectral Spatial 2D CAR model ) § Model Spatial Spectral
. #[dewrm\a&mnH faclorisalion ]EEt param, esfimaion § synthesis. /ﬂ\ defactorisation || correlation 7> .
Tsize

* Spectral Decorrelation using Karhunen-Loeve transformation
Yo =TY..
where T = [uf, vl «1]" is composed of eigen-vectors of
matrixd = B{Y;, ¥/}
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Smooth 2D CAR Texture Model

Synthesized
Suo-space
image

Original
sub—space

inage “ANALYSIS ) [» | (SYNTHESIS B
—L T H —_—
Spectral Spatial 2D CAR model g T Model Spatial Spectral
decorrelation "Lfammsaﬂm param, estimation E‘ synthesis - \deladonsahon | corrolation
Tsize

* Spatial Factorization — decomposition of monospectral image
into multi-resolution grid using Gaussian-Laplacian pyramid
— Generation of Gaussian pyramid
=¥ *YVow) k=12, ..

using of convolutlon mask based on weight function w
Z Wy Y 2r+(hu)
— Laplacian pyramld from different Gaussian pyr. levels

Y<k~) Tn ( k+1))

il
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Smooth 2D CAR Texture Model

Synihesized

Original
subspace i e
HuEet) ANALYSIS [ | (SYNTHESIS
2 N
Speciral Spatial 2D CAR model E Model Spatial Spectral \_»
decorrelation factorisation param. estimation | g synthesis. defactorisation correlation
Tsize

* Support set estimation — support set is required to be:

causal: unilateral:
RRKOO R R %R R
¢ ERROO T %% R R
1) ®RT OO0 , ®roO
T 00000 00000
00000 0000
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Smooth 2D CAR Texture Model
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Smooth 2D CAR Texture Model

Synthesized
Suo-space
image

Original
sub-space

Kz ANALYSIS [+ | (SYNTHESIS
11— —
| Spectral Spatial 2D CAR model E! Model Spatial Spectral
| decorrelation [ faclorisation param. estinalion ¥ § [{H_synihesis [ 4 defactorisation ™ corslalon )

size

* 2D CAR model can be expressed as a stationary causal
uncorrelated Gaussian noise driven 2D autoregressive process:

Y. =7X,+e,

= CAR parameters 7 and 2 can be estimated analytically
using Bayesian estimate (ML,LS).

= (Z Xng‘)il(Z XrYrT)

Probabilistic Texture Model
Results 2D CAR — Smooth Samples

Synthesized
S <Ub-Soace
o becd image
ety ((ANALYSIS L[ w | (SYNTHESIS )
N |§ e
Speclral Spalial 2D CAR model £ Model Spatial ‘ Spectral L.
decorrolation || fectorisation param. estimation | & synthesis. defactorisation | | correlation |
\ P el E=r—
size

* Model synthesis

Y. =X +e  §=E{]Y"}

* Spatial defactorization — Gaussian-Laplacian pyramid collapse
—Yra

* Spectral correlation — inverse Karhunen-Loeve transformation
Yeo=T Y.

:“)
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Alternative MRF Models

3D CAR Texture Model

[HaindI&Filip 04]

* 3D Causal Auto-Regressive model
& without spectral decorrelation

Synthesised
texture

Original [ Spatial | ANALYSIS

texture | factorisation | P p—
Support set i 3D GAR model »| £ Model =%{  Spatial
_estimation > param. estimation > & synthesis —»_defactorisation

size

2 Ashser.fs;,rzfsz,- + €rirae

{s1.52}€Ir; 7y

Yiirse =

€11 a0 €EN(0,D)
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* Original Data Rendering — smooth samples - 2GB data

I«

* Results from model - 0.1MB data

I Tw
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Alternative MRF Models
3D NCAR Texture Model

* 3D Non-Causal Auto-Regressive model
= without spectral decorrelation

Synthesised

Original | " spatial texture

i ' ANALYSIS
torisati
s - SYNTHESIS
| z X
|__ Sipportsel 5 3D ARmodl Eg Model =% Spatia
_ estimation param. estimation @ synthesis —» defactorisation
size
Y, =
172,08 T

A, 7szy?“| —s1,r2—s2,0 T €y a0
{s1.52}€r ry

*Toroidal lattice
*Approximate analysis

€0 €N(0,T) *FFT synthesis
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Alternative MRF Models

2D GMRF Texture Model

2D Gaussian Markov Random Field model  [HaindI&Filip 03]
Y., = Z 05 Yrsi+ €4
s€lr;
o? if s=(0,0)
R.(s,i) = E{esiermsi} = —0lay; if s €1,
0 otherwise

Original images synthesis

Probabilistic Texture Model

Summary

M Utmost compression ratio ~ 1 : 10°
VIFast synthesis and analysis.

VIFast GPU implementation possible.
VIPossible unseen texture modelling.

X Occasionally compromised visual quality.
[X]Stability test.

Inappropriate for regular textures.
XIGeneral MRF problems.
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Mixture Models

Probabilistic 2D Mixtures

Alternative MRF Models

3D GMRF Texture Model

* 3D Gaussian Markov Random Field model
}77",- = Z Asi/r—aa +Cre

sl
o3 if $=(0,0)andi=j
Ru(s,1,7) = E{esier—s;} = f(fv'/laf,j if s €I
0 otherwise

wood 3D GMRF 2D GMRF
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Mixture Models

Texture Modelling

Mathematical
Models

Sampling

Techniques

Statistical
Models

Markov Random
Field Models

Mixture
Models
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Mixture Models
Probabilistic Discrete & Gaussian Mixtures

* Spectral factorisation using PCA decorrelation.
* Monospectral / bit factor mixture models estimation.

» Texture synthesis by conditional distribution
generators.

* Spectral defactorisation.

Factor mixture synthesis:
M

P(Yy) =Y P(Yy [m) p(m)

Y:“.} = [Yg Vs € ]r U {T}]
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[Grim & Haindl 03]

P(Yy) = Z p(m) P(Yyy | m)

meM
P(Ypy) = > p(m) [T ps(¥im)
meM s€ly

Gaussian mixtures [Haindl et al. 04]

§ 1 (ﬁn - I’men)2
P(Ypy|m) = H T oxp {7 352
mn

neN mn
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Mixture Models

Bernoulli Mixtures

[Haindl et al. 10]
ps(Yalm) = 600 (1-0,)""" Y,
ps(' ‘ 7”’) (Oms 1- 9m,s)

Estimation using EM algorithm

POV, | m) p®(m)

eB={0,1}

¢ (m| Vi)

Haindl & Filip. oo oo Yin €S

Zew Oy |5 PP ()
p(r‘+1)(7n) - Z m‘ Yiry)s
[S] |Y{,}Eé
(t+1) 1
PII(E | m) 1SIpe D (m)
3 8(E Y)W (m|Yyy), £€B

Mixture Models
Bernoulli Mixtures - Results

Measurement Synthesis
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Measurement

Synthesis

i

Hybris & Compound Models

Mixture Models

Synthesis

Conditional probability density Y, known part of the window

M
Z Wm(y{p})pn(}/n | ”L)

m=1

p(m) Dy (Yip) [m)
YL o) Bo(Yiay 1 9)

12 1m)

nep

Pulp(Yu| Vi) =

WalYin) =

P,(Ygy|m) =
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Mixture Models

Summary
M Modest compression ratio ~ 1 : 10°
VI Allows semi-regular/regular textures modelling.

VICan be combined into more complex compound
mixture/MRF models.

Large training set (less robust than MRF).
XITime consuming parameter estimation.
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Hybrid BTF Models
Gaussian Mixture Model

Texture Modelling

Mathematical
Models

Sampling
Techniques

Hybrid & Compound Mixture

Models Models
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<\

Statistical
Models

Markov Random
Field Models

[ GM synthesis |

Monospectral

[Haindl et al. 05]

Original

paramaters

| Model selection |

+ BTFcolor ¥ —» Y gray-scale
* Gaussian Mixtures synthesis ¥’

e Yu; find the most similar centroid:
Viry = argmin{[[Yg,y — puil|}
(r)

* Optimal BTF sample from the original: y; — Y{,,; — 17{”}
¢ Boundary smoothing
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Hybrid BTF Models
Gaussian Mixture Model

Measurement GM synthesis
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Compound MRF Texture Model

* Dedicated models in different structure regions:
PX,Y|Y)=PY|X,V)P(X|Y)
K
X.e{l,2..... K} control RF, Y= U Y regional RF

* Maximal Aposterior Probability: =

(X.V)=arg max P |XY)P(X|Y)

XeQx,YeQy
[HaindI&Havligek10]

* Two step approximation:
(X) = arg max P(X|Y)

(Y) = argmax P(Y'|X,Y)

Compound MRF Texture Model

: Materials Appearance
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BTF Hybrid & Compound Models

Summary

V1 High visual quality

V] Fast synthesis (CMRF)

VI High compression ration (CMRF), modest compression (hybrid)
No analytical solution

Part of original measurements stored

Conclusions on Texture Modelling

* Modelling approaches overview

compres.  cnlarg. A/S spectral | blockwise | GPTU | paral. | unscen
scamless | separated | synthesis impl. data
GMRF 2D 1:10° Y ¥ i~ % N ¥ Y
GMRF 3D  1:10° Y ¥ + % N X Y
CAR 2D 1:10° Y Ve - Y Y Y Y
CAR 3D 1:10° Y Y + Y Y Y Y
GMRF 1:10° Y ¥ + Y Y Y Y
G/D/B/M 7 Y Y + Y N N N
bybrid 1:3 Y Y + N N N N
tilling 1:3 Y Y + Y Y N N
roller 1z 8 ¥ ¥ + Y Y N N

* No ideal method exists. Generally:
— Better visual quality & sampling-based methods
— Higher compression & probabilistic methods
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Appendix

2D CAR Model

IR -1 —a \ . o
Y |7,07%) = (270®) =5 exp {7”’ {”72 ( ) Vs < >}}
d !

« a unit vector

ﬁ’ — ( Vy(" 1) Vrjl;(r—l) )
=1 = r =,
‘Cty(r—l) Vx(r—l)

r—1
‘/a(r—l) = ZA]‘ AZ-
k=1

r—1
Vagp-ny = > AxBY
k=1
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Appendix

2D CAR Model — Parameters Estimation

Yvr:fYXr'Fer

v =lay, ... ay) n= card(Iy) o?

A/rl—l = V?j—l) Vay(r-1)

§
22 _ (r-1)
1)

Viemy = Vap—n + Vi
T o
’\('7'71) = V;/(f‘*l) - ‘/Uy(r—l)‘/at(rl—l)‘/l'y(r’l)
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Appendix
2D CAR Model — Optimal Model
M; — model
max{p(M;|Y 1)}
j
1
Dig-y = —5Wn[Vigo)|
Blr)—dn+d+1
NG EELES NN
d*n d Blr)—dn+d+2—1i
+ Thm‘; I I( 5 )
B IHF(/}(O) 7d7];d+272)}
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Appendix

Gaussian Mixture Model - Analysis

.
p(Yey) =D pip(Vry | 1, )

i=1

- {7 (Y{r} - /M)TE;l (Y{r} — i) }
’ 2

Pl

(2m)2

])(Y{T} | s i) =

P(Ym \,Um Zi) = H 7)(Ys \ ,U/LS‘-,Ui,s)
Vse{r}

K
1
L:m S Y pip(Yy i S0

Yiyivrel  i=l
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Appendix

Gaussian Mixture Model - Synthesis

K
p(YilYe) = > WilYo)p(Ye | tis. 01s)

i=1
w; p(Ye i, 04)
N
Zjll w;p(Ye | pj. 05)
p(YC‘Uzv UZ) = HP(Ya | Hiss ULS)

seC

WilYe) =

Cc{r} se{r}-C

Haind| & Filip: Materials Appearance




Michal Haindl  Jiri Filip

Institute of Information Theory and Automation
of the AS CR

Course

Advanced Textural Representation
of Material Appearance

BRDF and SVBRDF Modeling

oozt scorar () 2;

www.SIGGRAPH.org/ASIA2011

* BRDFs
— Representation
— Factorization
— Compression
— Empirical models
— Physically-derived models
* Spatially-Varying BRDFs (SVBRDFs)
— Modeling
— Editing
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Bidirectional Reflectance Distribution
Function

BRDF Representations

* Distribution of radiance reflected (L)
dLT(A‘e’Uv ¢v) @}

BRDE(A,8:, ¢1:00: bo) = 75355 cos iy

irradiance E;
* Properties
— lllum./view directions reciprocity
* swapping source and sensor does not effect BRDF value
— Energy conservation
* portion of energy reflected to all directions has to be
betweenOand 1
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[Matusik et al. TOG 03]
e lllumination-view

Spatially 0
uniform —>

* Half-difference angles [Rusinkiewicz 98]
diff angles

lhalf
angles

* Onion slices model [Havran et §I. CGF09] i
Nyl N

!

BRDF Measurements Compression

* Splines [He et al., SIG 92]
— Used for storing precomputed BRDF model values
— Do not exploit BRDF symmetry, low compression
* Spherical harmonics [Westin et al., SIG 92]

— Analogy of sin,cos basis functions on sphere in frequency
domain

— Requires many parameters otherwise produces artifacts
* Spherical wavelets [Schroder & Sweldens, SIG 95]
— Basis functions localized in both spatial and frequency
domain
* Zernike polynomials [Koenderink et al., ECCV 96]

— Polynomial functions used in optics as a basis functions

mapped on hemisphere
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BRDF Measurements Factorization

[Kautz et al. 99] — use SVD to produce two 2D factors instead of 4D

BRDF. 5
BRDF(wi.w,) & 3 Pey g (1 (wi: 00)) Qi (2003, 0))

k=1
[McCool et al. 01] — use Homomorphic factorization to generate
more than two positive factors. ;
BRDF (i) & [ [ P (s (i 00))

j=1
[Suykens et al. 03] — each pixel = product of three or more two-

dimensional positive factors using chained matrix factorisation.

J K
BRDF (wi,w,) & H Z Dy i (50 (05, 00 Qi (T 2 (01, 60
=1 k=1

[V] factors in form of textures & interactive rendering
For compression of measured BRDFs only
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Empirically Derived BRDF Models

* Phong shading [Phong cACM 75]
— Ambient, diffuse, and specular terms

BRDF(I,V) = kyiq + k(I - N)ig + ko(R - V)i,

k...material coefs., i...light coefs. R =2(I-N)N -1
— More computationally efficient modification [Blinn SIG 77]
replacedterm /2-V by N -H  Usedin OpenGL and
Direct3D implementations.
— Improving energy conservation for
metallic surfaces using facet-based

model [Neumann et al. CGF 99].
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Empirically Derived BRDF Models

[Schlick EG 94] -
Fresnel refraction

[Lafortune et al. EG 97] generalized phys. plausible
cosine lobes, one lobe model as 5 params 7

Y, = plw lle -ulv .ly'b +.u U,
* Extension of Phong model
[Ashikhmin & Shirley JGT 00]

— non-Lambertian diffuse term, anisotropic, energy
conserving, Fresnel refraction

— intuitive parameters, complex computation
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Physically-Derived BRDF Models

Physically-Derived BRDF Models

— Improvement [Cook & Torrance SIG 81], reflectance as
* Fresnel function F
* Facet distribution D
* Shadowing/Masking term G

— Complete model [He et al. CG 91]

7 cosf; cos b,

BRDF(,,6,) =

« Inter-reflections, occlusions, polarization, interference, diffraction,
wave effects of light, ...

XIsotropic reflections only
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* Micro-facet models [Torrance & Sparrow JOSA 67] @ §
— Diffuse (Lambertial lobe) and scattering parts \%
— Each facet — long V-cavity & perfect reflector _\/_
— Random sizes and Gaussian distribution shadowing

» Simplified analytical microfacet model [Ward CG 92]

 Specularity as exp() function, four physically meaningful
parameters, anisotropy modeling

ki |, 1

s~ ... a9
™ cosf;cos b,  4dma?

e tan? 8 /a?

BRDF(6,,6,) =

* normalization in [Duer 05]

* Microgeometry model [Westin 92]
— Geometry based model & More general

XlUnderlying material geometry has to be
known, difficult to fit to measured BRDFs
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Physically-Derived BRDF Models

* Model of diffuse reflection from rough surfaces
[Oren & Nayar 1JCV 95]
— Uses [Torrance & Sparrow JOSA 67] micro-facet model,
— Roughness as probability distribution of facet slopes,
— Each facet has Lambertian reflectance.

* [Schlick 94 CGF 94]

— Anisotropic, Sub-surface effects in layered materials,
energy conservation

— Account for difference between homogeneous and
heterogeneous materials

— Variable complexity formulations
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Physically-Derived BRDF Models

[Kurt et al. CG 10] -

modification of Cook-Torrance
microfacet model.

— Anisotropic extension of facet distribution, energy
conservation, simple fitting, fast rendering

Cook-Torrance:

BRDF(6;,0,) = @ + kﬂw
T 7 cos 6; cos b,
Kurt et al.: X F(VH)D(9 )
BRDF(6:,0,) = —2 4k —mmnt 03 Ph)
(6, 6.) — “4(VH)(cos 6; cos 0,,)
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anisotropic, energy conserving, simplified




Conclusions on BRDF Modeling

* Wide range of BRDF modeling and compression
techniques available
— Non-linear iterative estimation of parameters, depends on
initialization
— Memory efficient representation of BRDF
* Results of BRDF models & low-pass filter.

Measured

* Higher quality & more parameters to store

& often more complex fitting
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SVBRDF Capture & Modeling

T McAllister ©ACM 02
* [McAllister TOG 02] fitted per- G
pixel Lafortune model to per-
pixel BRDF data of nearly flat

surfaces

* [Gardner et al. SIG 03] fit Ward
isotropic BRDF model to
reflectance field and geometry
obtained by scanning device

* [Lensch et al. TOG 03]
reflectance and geometry from [lewcielalonciios
multi-view/illum. images &
Lafortune model BRDF clusters
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SVBRDF Capture & Modeling

Spatially-Varying BRDFs

SVBRDF()‘ 2.y, 0, biy O, (751!)
* Restrictions

Lacquered wood Wallpaper

— Opaque surfaces (no subsurface scattering)

— Nearly flat surfaces (no occlusions, masking &
reciprocity), no interaction between pixels

* Advantages

— No complicated light transport effects in material
Straightforward spatial modulation of BRDF model’s

parameters
— Allows spatial clustering & each cluster single BRDF &
sparse effective measurements 2
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SVBRDF Capture & Modeling

* [Marschner et al. TOG 05] — reflections from sub-
surface wooden fibers & fitting shading model & 2
sub-surface terms

. [Marschner et al. ©ACM 05]
* [Wang et al. TOG 08] — scanner-like device & 2D

slice BRDF (single view) — region similarity & micro-
facet anisotropic BRDF

0

=3

Material

Sampies_ =5
23 §§
‘Sample{ Plan )

e -

'Wang et al. ©ACM 2008]
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SVBRDF Capture & Modeling

* [Kautz et al. CGI 04] approximate SVBRDF obtained
as combination of 10 elevation dependent images

* [Dong et al. TOG 10] fitting measured BRDF
([Ashikhmin 2000] micro-facet model) clusters to
spatially-varying reflectance map B

— ——— Background
~\ /™ Environment |

/ "\ Lighting [T !
a 2\
/ sl LMoy,
/ Wt o
/ @ S0y

Material Sample (a)

[Dong et al. ©ACM 2010] 50-200 reflectance maps, 30 BRDFs 9
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* [Ren et al. TOG 11] - “pocket reflectometry”: SVBRDF
from movie of static object lit by linear light source
captured by a static mobile phone camera

— Use set of BRDF reflectance targets

— Measured reflectance fitted as a mixture of such targets

[Ren et al. ©ACM 2011]
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SVBRDF Editing

SVBRDF Editing

* [Lawrence et al. TOG 06] — BRDFs decomposition into
compact shade-tree structure & reflectance editing.
Distribution of BRDFs over surface & spatial editing

e [Pellacini & Lawrence TOG 07] — interactive SVBRDF
editing & user defined constrains & smooth
propagation

Original

Edited
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* [Matusik et al. TOG 09] editing and printing SVBRDF
based on linear combinations of measured ink
BRDFs.

[Matusik et al. ©ACM 2009]

Conclusions on SVBRDF Modeling
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References

* BRDFs can be effectively and interactively spatially
modulated to obtain realistic material appearance

* Physical limitation to nearly-flat, opaque surfaces

* Generally, does not allow pixels interactions (inter-
reflections, scattering., etc.)

* Most approaches rely only on (SV)BRDF subspace by
enforcing BRDF properties & rough approximation
& often restrictions to isotropic reflections only
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Outline - Analysis and Compression

* BTF data dimensionality analysis
— SVD, PCA & psychophysical methods
* Methods of BTF data compression
— PCA Eigen-images
— Reflectance models
— SVD tensors
— Spherical harmonics + wavelets
— Data clustering
— Layered volumetric models
— Vector quantization
* Selected methods comparison
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Outline — Modelling and Editing

BTF Sample Dimensionality Analysis

* Sampling Methods
— Tiling, BTF Roller

* Reflectance Models

* Markov Random Models
— Plain models
— Compound Model

* BRDF Texels

* Mixture Models

* BTF Editing
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[Suen & Healey, IEEE PAMI 2000]

SVD of BTF data correlations
— Sample complexity ~ Dimensionality & Number of highest eigen-values of
correlation between RGB components in moving support window (for each
combination of view and illumination directions).
— Tested on CURET database only.
ij = RR, RG, RB, GR 1
R; T
i (m) TA(em)]

XCA.(X 1 m)CA

\ - 1
‘ LZWZL(X)
: R =UDV’ -
- ' \ x=[r,7)
No of
correlations o V5} 9
>2i=10; >
St 2 =
Pty

Typical values 5-15 (F = 0.99) )

No of BTF images
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BTF Sample Dimensionality Analysis

BTF Sample Dimensionality Analysis

[Koudelka et al. TEXTURE 2003]

PCA of BTF data
— Dimensionality & number of eigen-images with the highest energy
— Typical value 30 (F = 0.9)

A=[X;-X, Xy -X,...,

g v
T o M=ATA

No of Mean BTF
pixels R B image

No of BTF images
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[Filip et al. ACM TOG 2008]

Psychophysical estimation of BTF dimensionality
* Pixel-wise difference of image pairs (SSIM, VDP, CIE LAB, etc.)
* Similar images substituted by representative one
* Selection of important BTF images only
* BTF index map:
W substituted images (index only)
[ Preserved BTF images

Selected subset:

5-30% of original
images

>
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BTF Data Alignment Dimensionality

Reduction

Compression Methods

[Miiller et al. 06] — BTF variance reduction by data alignment with
respect to a local geometry.

—  Estimate per-pixel coordinate system
maximizing ABRDFs correlation &
rotations of ABRDFs.

— Maximization &> ABRDFs
represented by spherical harmonics .
in Fourier space.

— Variance reduction & higher
compression

Miiller et al. ©WILLEY 2006]
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+  Compression of all BTF images at once (B1'F(r1,12.i,v))

Corduroy sample courtesy of University of Bonn

. Compress individual views (reflectance fields R, (r1.72,1))
separately
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Compression Methods Taxonomy

O Compression of all BTF images at once

= ABRDF factorization

= Fitting BRDF models to pixel-wise ABRDFs

= Full BTF factorization

= Per-cluster factorization

= ABRDFs clustering + clusters compression (SVD,BRDF model)
O Compression of separate views (reflectance fields)

= Fitting BRDF models to a fixed view ABRDF data

= Per-view factorization
O Combining geometrical and reflectance information
O Multi-level vector quantization

O Mixture of parametric BRDF models 9
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ABRDF Factorization

[Tsai et al. 11 PAMI] — ABRDF as multivariate spherical
radial basis functions

A 3
BRDF(wi,w,) = B [ etntonscltn) =

. j=1_, n=1
VI good compression, data-dependent, continuous param. rep.

Slower fitting, lower compression ratios than linear
factorization methods

diff. image  diff.

Tsai et al. ©IEEE 2011
Haind| & Filip saieta !

Fitting BRDF Reflectance Models

Fitting BRDF Reflectance Models

[McAlister 02] - fitting pixel-wise single multi-lobe Lafortune
model (LM) to all view and illum, directions

BTF(ry,12,4,0) & pag ., + Z/J,«.m rak|wf Dy g gy 71 720k
W

[V good compression, fast fitting
blurry images, suitable for low-height samples only

[McAllister ©ACM 2002]

[Daubert 01] — LM + additional iteratively obtained look-up table

BTE(r1,72,5,0) % Ty i (/m-, ot D F Dm)
k

V1 good quality for regular samples
require to store extensive view-dependent look-up table
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Wou et al. 11 EG] — each BTF texel as mixture of weighted sparse
parametric BRDF models.

— Straightforward appearance (spatial, reflectance) editing by
parameters modifications.

1 high compression, ~ ﬁ parametric editing, importance sampling support
time demanding compression, no GPU implementation

wd A @
A B+ i+
‘ Lambertian Lafortune

4
BTF
+ ﬁ + o
Lambertian Residual

Wu et al. ©Willey 2011]
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Fitting Per-View BRDF Reflectance Models Fitting Per-View BRDF Reflectance Models

[Meseth et al. 03] — Colour albedo-map modulated

by a luminance Lafortune model (up to 3 lobes) [Malzbender 01] — each view direction represented by per-pixel
[V less parameters to store o polynomials.

Ry rsd.0) 22 pay e + Poai o, @i Dy o]0 ) . ,
for less specular samples only e ‘”Zk:[ i) Ro(ri,ra.1) & ao(r ra)ud, + ar(rro)ul, + an(ry, o), u,, +
[Filip & Haindl 04] — polynomial extension of Lafortune model ] fast fitting Faalra, roYtin + aalry, o), +as(rira)

n,
»

Rulrrc ) 3 el DA

‘IM [Filip & Haindl 04]

polynomial

[V good visual quality low quality, not suitable for specular materials

1
2(]

Original BTF
image '

X lower compression ~

- coofficients

- e (W (e = o Ry
Histogram Histogram Funcion Polynomial — -
Malzbender et al. ©ACM 2001
One-lobe LM compmauon Computation compuxanon Fitting Resited [ 001]

estimaton Polyn. LM

. - | estimation
‘ rank of
( polynomial
L
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SVD-Based BTF Factorization PCA-Based BTF Factorization

u D V7 ’ A=A—pa U=cUb
Slngular Value . ATA -unu” D = diaglor *,...,0, }}
Decomposmon A |, - "
\ o _ . B =
" O\f e No of tal | ATA » Ul U J =
pixels T 7 g, o of s a
; ! A - 7 =
A UDbv +—— Eigen-textures  Eigen-ABRDFs pixels i A - SVD ! M=UA
n = rank(A) 83 n "
m :
No of BTF images | :I 7 7
= ntidd No of BTF images f i o
. BTF image reconstruction using /; terms el BTF image reconstruction usmg]w terms
BT (ryry,i,0) w0 (s, ma)ajey (i) MT
j= Ha "
J=1
= IHu,/Iiew . = iufview |U
direction direction
[ Pixel location
Pixel location )
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Full BTF Factorization

Per-View BTF Factorization

[Koudelka et al. 03] — PCA of all BTF images

in texture space.

BTF(ry,1y,i.v) ZUk(ll opvilri.ry)

[Sattler et al. 03] — PCA of all BTF images in individual view

directions.
Ro(ry,ra,4) leml)dkvm(n )
k=1
V1 fast compression & reconstruction, good visual quality

1 high compression = ) quallty control

100C

: 1
long reconstruction times, lower quality [Koudelka et al.03] low compression rates . %
[Guthe et al. 09] — PCA of all BTF images in ABRDF space. . R
" ) . g ) ) P [Wong & Leung 03] — compress illumination dependent data &>
— Additional transformation T to minimize visual difference herical h ics. Th fficient bl furth ded usi
— Visual difference & spatio-temporal filtering > HVS cone responses, sp .el'lCd armonics. The coe .ICIen planes turther coded using
contrast sensitivity function a discrete wavelet transformation.
BTF(ry,r,i.0) & ZT[uk('r'l,rz)]akT[vk(v.'L‘)] M reasonable compression, controllable by a number of components
1 k=1 lower reconstruction speed — requires inverse DWT
1 high compression =~ 500 perceptual quality measure
s
long compression times )
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Full BTF Factorization

Full BTF Factorization

[Vasilescu & Terzopoulos 03] — BTF images as vectors in 3D tensor

& multi-modal SVD & controllable compression of view/illum.
effects.
B =2 x1 Ugyp X2 U; x5 U,
T=Bx,U; x3U,
BTF(i,v) =T x2i% xzvT

- [Vasilescu & Te\/npou\(;x ©ACM 2004]
[Wang et al. 04] - Instead of 3D texel-illumination-view tensor,
BTF data directly in 4D tensor & preserving spatial relationships

in individual BTF images. 1

P
V] compact representation, controllable compression 100
many components interpolation slows-down rendering )
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[Ruiters & Klein 09] — sparse tensor decomposition (K-SVD) into
small dictionary tensor and two sparse tensors.

BTF(), ) & Lyij X Viek X Py

colors X leghtsx 1D- D xvicwsx Dy Dy xpizels
EAM g Revlorsxlightsx i ankeR ixvicwsx Dy - p e RPpxpiscls

1
1000
slow compression, long rendering times for high visual quality, no hardware

implementation

[V] compact & high compression =
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Per-Cluster Factorization

[Muller et al. 03] — combination of iterative clustering of ABRDF
data (modified K-Means) and a PCA in each cluster. Eigen-
image reconstruction error is used as a distance measure in
the clustering process.

BTF(r,ra,6,0) R Watey )t Y0ty WV sty 15 0)
k=1

. ) 1 )
V1 high compression = 300 , good quality

30
long iterative clustering & compression times
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BTF Space Clustering + Factorisation

[Leung & Malik 01] — 3D textons & vocabulary of prototype tiny
surface patches with associated local geometric and photometric
properties. Appearance vectors & set of linear Gaussian
derivative filter outputs.

[Liu et al. 04] — BTF sample & small number of 4D point apperance
functions (textons) multiplied by 2D geometry maps. Textons
compressed by linear factorization (SVD).

] texton based synthesis, fast HW implemented, high compression
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BTF Space Clustering + BRDF Model

Combining Geometry and Reflectance

[Filip & Haindl 05] - ABRDFs clustering (K-means) + polynomial
expansion of Lafortune model in cluster centers.

Kop{dofr,ra)
= Koa(lulri. )
yo= KTy, ra)
Diri,ra)ez = Kpa{lolri,ra)

nlri,re)e = Kos{T{ri,rs)

p

)
)
) Ry(ri,ra,5,0) 20”,,‘[/;l ) J./' ‘(r))""(')]j
)
)

V] compression =

fast fitting of several ABRDFs only

1
200
quantization artifacts

[Filip & Haindl 05]
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[Liu et al. 01] — spare set of small BTF image tiles combined
according to range-map to produce novel BTFi |mage of
arbitrary size. ; ;

1 arbitrary size BTF synthesis

very slow, low BTF compression

i [Liu et al. ©IEEE 2001]

[Magda & Kriegman 06] — separate geometrlc /nformatlon =
layered volumetric model of material structure and reflectance

data = Lafortune BRDF model [Magda et al. OWilley 2006]
1 high compression, easy BTF interpolation

= set explicitly, high grazing angles artifacts »',:‘» -

Number of layers and height of the sample
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Combining Geometry and Reflectance

Multilevel Vector Quantization

[Menzel & Guthe 09] — geometric BRDFs = BTF separation to
intuitive and online editable texture maps:

* meso & micro scale geometry & depth & tangent 2D maps
e light interactions & Ashikhmin [2006] analytic BRDF model

segmentation to basis materials

’ . ) . 1
1 reasonable visual quality, high compression = 1006’
interactive editing without need of compression

for opaque samples; no sub-surface scattering
inter-reffection effects; shadows reconstructed
from depth map; BRDF model & chromatic errors
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Selected Methods Comparison

Per-view Per-view Per-view Entire PCA  Per-cluster

polynomials Lafortune PCA PCA
[Malzbender 01] [FilipHaindl 04] [Sattler 03] [Koudelka 03] [Muller 03]

Parameters psychophysically estimated

Compression a2 £ a 1 ~ 1 P 1 ~ B

(average) 14 16 7 91 31
Analysis time ~ 165 ~ 136 ~ 10 a2 3862 ~ 1098
Synthesis time ~ 1 ~ 1 &2 ~ 8 s 22

(25x25 pix.) [s]

Survey [Filip & Haindl PAMI 10]
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Modelling Motivation

* BTF & image sequence & limited spatial resolution
= disturbing repetitive effects when mapped on large
objects.
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[Havran et al. 10] — BTF multi-level vector quantization algorithm
— BTF parameterized & set of 1D, 2D, 3D, and 4D data slices
— Multi-level code-books of slices (indices/scales).
— reconstruction & fast chained indexing in nested code-books

V1 high compression = 700’ direct importance sampling support, hardware
implementation

Databasos Sharod by al Matrists

time demanding generation s

of optimized codebooks

[Havran et al. 10]

Original Data

Conclusions on BTF Compression

* BTF & massive data = lot of redundancy ."}
* Compression methods
— Remove data redundancy
— Preserve perceptually important visual features
— Allow random access for fast data reconstruction
* Compression & reduction of measured data
* Synthesis & arbitrary BTF sample enlargement
* Synthesis (usually with compression) = Modelling

* BTF data modelling & required in practical
applications
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BTF Modelling
Generic BTF Model

BTF/spectral/spatial
BTF
Factorization
Measurement

Synthesis

Interpolation

L

Sl
=
=

L )

i Shape )
oo | 2
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BTF Modelling Taxonomy

BTF Modelling

BTF Modelling

Mathematical
Models
Sampling Reflectance

Techniques Models
Statistical

Models

Hybrid & Corﬁ[obund I Mixture

Markov Random
Models Models Field Models

e Sampling-based approaches
— Texture Tiling and patching
— Roller
* Model-based approaches
— Reflectance Models
— MRF-based models
* Multiscale 2D / 3D (non)causal autoregressive / Gaussian MRF
* Compound 3D MRF
— Mixture Models

« Discrete / Gaussian / Bernoulli Modelling pipeline

off-line on-line

original analysis BTF synthesis syntheti
-’[ tools g g:;i | tools ™ BTF

BTF Interpolation + texture Mapping + rendering 2 %
Haind| & Filip: Materials Appearance i Haind| & Filip: Materials Appearance ’“1:‘95‘5

BTF Sampling

BTF Sampling

BTF Modelling

Sampling

Techniques

Haind| & Filip: Materials Appearance

oft-line

BTF
Measurement >

Quilting Tllling Synthesis :
Request

Source O

text

exture Dﬁ“ D

Target IﬁT‘ —lh_ I
texture 2 ||‘

Database
Patches 5 Random
Selection - Generator|
! [}
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BTF Sampling

Approaches Overview

BTF Sampling
Approaches Overview

e [Liu et al. 01] — combining a sparse set of BTF measurements
according to quilting-based synthesis of material range-map

no analysis-synthesis separation & slow synthesis, visible seams

* [Tong et al. 02] — BTF synthesis based on similar surface
textons & BTF pixels are assigned texton labels
Slow synthesis
* [Neubeck et al. 04] — iterative copy & paste synthesis using
[Ashikhmin 01] candidate search.
No separation of analysis and synthesis
Small size neighborhoods restriction
* [Zhou et al. 05] — image quilting-based BTF patches creation
and interactive editing
Very slow
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* [Kawasaki et al. 05] image-quilting of PCA-compressed spherical
harmonics BTF expansion
no analysis-synthesis separation & slow synthesis
* [Lefebvre&Hoppe 06] texture synthesis in low dimensional
appearance space obtained by PCA.

* [Leung et al. 07] — BTF data as Wang tiles
—in spherical harmonics domain

[V] Real-time rendering on arbitrary surface,

M interactive tiles editing
* [Somol&Haindl 05] - image tiling by a set of arbitrarily

connectable tiles (the same boundary, different content)

V1 Real-time BTF rendering

* [Haindl&Hatka 05] - tiling based on double toroidal patches

M Real-time rendering, fast and automatic tiles generation )
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BTF Sampling

Sampling
BTF Roller - examples

Example of BTF tiling [Somol&Haindl 05]
Find optimal cut of tiles across all BTF images

lacquered

Original texture ( wood Estimated tiles

Texture generated from tiles
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BTF Sampling

BTF Reflectance Models

Summary BTF Modelling
Mathematical
M High visual quality Models

1 Often numerically simple (GPU) Sampling Reflectance
Techniques Models

Low compression
Observable repetitions (low frequencies, large textures)
Unseen textures / view / illumination angles impossible
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BTF Reflectance Model BTF Reflectance Model
Lafortune BRDF model [Lafortune97] « Pixel reflectance during changing illumination position (view
* physically plausible reflectance model with 7% lobes position fixed) — material wool
Y;J(L k) = Z Puk (C’X;u,kua: + CY,lz,kuy + CZtv,k“z)n”‘k 180
k=1 o 160
* one-lobe variant applied to separate view 3 140
Y, (1) = po(Cx ptie + Cyptiy + Czpu)™ g
original BRDF
— only 5 unknown parameters p, Cx,Cy,Cz,n for each RGB 1011 = — — BOF - 1-obe L approx
80}| - — - — - BRDF - 1-lobe PLM approx. o
SpECtraI band 0 10 20 30 f‘U ISU 60 70 80
— easy fitting & non-linear parameters estimation - tuminaton postien
. i L — Original reflectance shape
» 81 BTF images represented using 5 parametric images — One-lobe model approximation
* each pixel & dedicated Lafortune model — One-lobe model approximation + polynomial extension
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BTF Reflectance Model BTF Reflectance Model

Parameters Fitting Parameters Sampling

Original Image histogram Cumulative hist. [Filip&Haindl 04] [Somol&Haindl 05] Restored BTF images
i Mapping function 'E\;"Tegsi;r:ges
‘ - \/
° # PLM :
One-lobe P T e PLMperans. ) et of ul-sze
model 150 +om0 / * mn'm " Vorz:{zcted param. images
. -> m ‘ - =0 LS fitting & aj . B )

1000
o BTF Seamless parametric
polynomlal (rank 4) quilting BTF representation

500w e 20 20 = e =0 2w

Tile stitching
parameters
computation

* Resulted model & polynomial expansion of one-lobe Lafortune
model using coefﬁuents a;,5=0.
4
.4— Y,(i) = al Vo) =3 i jlou(Crotta + Crty + Cou )™V
=0 \

* Each BTFimage & 15 additional coefficient to store

BTF tiles Param tiles

PLM params.

computation
in resulted

tiles only

Tile cutting from
81 BTF images
using stitch

protocokol
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BTF Reflectance Model BTF Reflectance Model

Parameters Clustering

Parameters Clustering

BTF images * Proposed model compression ~1:10 & too low
for single view
Reconstructed = K-Means clustering of parametric tiles

param. images [Fili . 1
e Achieved BTF compression ~1:200 Filip&Haindl 05

Original Model Clustered Model

¢ per color (RGB)

a > 4 - - - "
Images K-means 256 clusters PLM params. | | Parametric
subset clustering —»| computation planes

{_selection ) | oftexels | cluster index {_inclusters | | reconstr.
Kulback- |

Leiber dist.
between

_histograms |
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BTF Reflectance Model BTF Reflectance Model
Results Results

Original Data = Original Data

Leather & wood N Leather & wood
BTF samples 2 ¢ BTF samples

One-lobe model only Extended one-lobe model Additional clustering - Extended one-lobe model Additional clustering

10 times difference




BTF Reflectance Model

Summary

1 High visual quality
] BTF seamless enlargement — parametric space sampling
VI Fast GPU implementation possible

Modest compression ratio ~ 1 : 200

Initial values for parameter numerical estimation
One-lobe is insufficient for some materials

No unseen data
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Probabilistic BTF Model

Probabilistic BTF Model

BTF Modelling

Mathematical
Models

Sampling Reflectance
Techniques Models

Statistical
Models

Markov Random
Field Models
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Probabilistic BTF Model

off-line

Spatial 2/3 D

Factorization
Spectral

Spectral

Defactorization Parameters|

Database % Estimation

Factor Synthesis
Spatial 2/3D
Defactorization

o8
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Probabilistic BTF Model

Measured
BTF data

(Range-map| (“Range-map)
(. —
> {_estimation ting !

. Sbrspace

index

BTF Clustering
* Representation of 81 view x 81 illum. using color histogram data features
* 10-20 eigen-vectors contain 95% of information
* K-means clustering (20 clusters) in 81 x 81 area

mination directions

viewing directions

Measured

Enlarged
BTF data

ange-map

| Range-map) _@—map
\_estimation J tiling =

Range-map estimation UANETS

* Direct measurement

* Shape from shading [Frankot 88]
— Coarse estimate from one image.

— Assumption of Lambertian surface

s 817, + Oz, + 6
o= Rl i 8.C.p) = p e D
\/H| +6,"+67 1+ 2 +

5,

* Over-determined Photometric stereo
— 81lideally registered images
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Probabilistic BTF Model

Measured offiine processing

BTF dala =
ange-map)

‘\esﬂma«on >

texture size

[ Hange—map)‘:
tiling
T Displacemer

Sub-—space 2D GAR texture model i
————— “images | 2DORRle
—_BTF (_ANALYSIS SYNTHESIS
segmentation t
Sub-space KRG I( {llum ;& view.

index l—» selection directions }

Sub-space moels - Iterpolation
polygon's normal

[HaindI&Filip PAMI 07]

Enlarged
ange-map

Synthesized
m] BTF image

direction
viewing direction

Smooth texture model...
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Smooth 2D CAR Texture Model

; Synihesized
Original
sub-space sub-space

. image
HuEet) ANALYSIS L[« | (SYNTHESIS
H
Speciral Spatial 2D CAR model E Model Spal\a\ Spectral \
decorrelation [ factorisation param, estimation #| g 1 _synthesis dstacnonsanon correlation
Tm\ \ \

Decorrelated GL Model Synthesmed Joined Synthesized
color pyramids parameters  pyramids sub- color
channels levels channels channels

Model’s products

4
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Probabilistic BTF Model

Demo

Probabilistic BTF Model

Results 2D CAR — Smooth Samples

* Original Data Rendering —smooth samples - 2GB data

* Results from model - 0.1MB data
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Probabilistic BTF Model
Results 2D CAR - Rough Samples

BTF - lacquered woad BTF - lacquered wood

original measurements proposed 2D CAR model

~1GB ~ 60 kB
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Probabilistic BTF Model
Results 2D CAR

= Original Data Rendering & data 4GB

* Results from model & data 400 kB => compression ratio 1:10 OOO

1. Original, 2. 2D CAR model, 3. relit geometry, 4. 2.+3. combined

12w
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Alternative MRF Models

3D CAR Texture Model

[HaindI&Filip 04]

* 3D Causal Auto-Regressive model
= without spectral decorrelation

Synthesised

Original " spatial | ANALYSIS e
texture e factorisation

( SYNTHESIS
L Support set E 3D CAR model - E " Model EE! Spatial |
" estimation param. estimation | | _synthesis deiactorisalion/‘

tiizo
va 28 Z

Asmzym —s1,r2—s2,0 T €y a0
{s1.52}€r ry

eters

€ryra,0 S N(O, E)
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Alternative MRF Models

3D NCAR Texture Model

* 3D Non-Causal Auto-Regressive model
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Alternative MRF Models
3D GMRF Texture Model

Alternative MRF Models

2D GMRF Texture Models

* 2D Gaussian Markov Random Field model

Y;,i = } as,zyrrfs,i + Eri

s€lr;

[HaindI&Filip 03]

o} if s=1(0,0)
Re(s,i) = E{e,ie,—s;} =< —olas; if s €1,
0 otherwise

Original images

synthesis + combination with range-ma

range-map

Probabilistic BTF Model

* 3D Gaussian Markov Random Field model
Y/r,ﬂ = Z As?;vfs,- + €re

s€ly

UJZ if s=(0,0)andi=j
Ru(s,i,j) = E{erier—eit = —ojai; if s €I}
0 otherwise

wood 3D GMRF 2D GMRF
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BRDF Texels

* Clustering ABRDF view/illum. Dependent texels using K-Means
* Enlargement of cluster index by 2D / 3D CAR models.

[Filip&Haindl 06] n

'

Y —
3n, >
nr\ \ [N

(Frstorse) = ooy - (Came )" |

NN, N,

Synthesised Normals

i Estimated Normals

=

7
n candi -
ad
TS |
N

Synthesised Index
Original Index

Cluster
distances
4

Summary

M Utmost compression ratio ~ 1 : 10°

VIFast synthesis and analysis.

[VIBTF space restoration (from 1 image in extreme).
VIFast GPU implementation possible.

VIPossible unseen texture modelling.

X Occasionally compromised visual quality.
[X]Stability test.

Inappropriate for regular textures.

XIGeneral MRF problems.
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BRDF Texels

Repeating 1 tile 2D CAR

Summary

[v] Compression
1:500

V] Reflectance
behavior of
clusters is

_ untouched

| M Fast rendering

For smooth non
regular surfaces

Slightly

compromise§
quality




Mixture Models

BTF Mixture Models

Probabilistic 2/3D Mixtures

BTF Modelling

Mathematical
Models
Sampling Reflectance

Techniques Models
Statistical

Models

Mixture Markov Random
Models Field Models
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* BTF space factorisation -> Multispectral factors
(~100).

* Spectral factorisation using PCA decorrelation.

* Monospectral / bit factor mixture models estimation.

* Texture synthesis by conditional distribution
generators.

* Spectral defactorisation.

Discrete / Gaussian / Bernoulli Mixtures

Mixture Models
Bernoulli Mixtures - Results

Synthetic gingham texture mapped on a snail shell model.
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Mixture Models

Summary
M Modest compression ratio ~ 1 : 10°
VI Allows semi-regular/regular textures modelling.

VICan be combined into more complex compound
mixture/MRF models.

Large training set (less robust than MRF).
XITime consuming parameter estimation.

Hybrid & Compound Models
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Hybrid BTF Models
Gaussian Mixture Model

BTF Modelling

Mathematical
Models
Sampling Reflectance

Techniques Models
Statistical

Models

| —& — ‘
Hybrid & Compound Il Mixture Markov Random

Models Models Field Models
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et [HaindI et al. 05]
Original
texture

) 2D GM model |
ANALYSIS
paramaters

| Model selection |

+ BTFcolor ¥ —» Y gray-scale
* Gaussian Mixtures synthesis ¥’
e Yu; find the most similar centroid:
Yoy = argmpin{|[Yey — pull}
* Optimal BTF sample from the original: y; — Y{,,; — 17{”}
¢ Boundary smoothing
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Hybrid BTF Models

Gaussian Mixture Model
GM synthesis

Measurement sampling

>

Compound MRF Texture Model

* Dedicated models in different structure regions:
P(X,Y|Y)=PY|X,V)P(X|Y)
K
Y= U ‘Y regional RF

i=1

X, e{L,2,..., K} control RF,
* Maximal Aposterior Probability:
(XA =gy gowe BOE| X, ¥)PEX | ¥)
HaindI&Havligek10]

* Two step approximation:
(X) = arg max P(X|Y)

(Y) = argmax P(Y|X,Y)
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Compound MRF Texture Model

* Original BTF images (ceiling panel sample)
;=0 = 0° 0, =30°0; = 0° §; = 45°6; = 300°

P T
>y e <

'.,,/‘:n

° Result of the model
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BTF Hybrid & Compound Models

Summary

V1 High visual quality

V] Fast synthesis (CMRF)

VI High compression ration (CMRF), modest compression (hybrid)
No analytical solution

Part of original measurements stored

BTF Editing

* Automatic texture adjustment to the target texture.
* Expected visual output.

» Texture enlargement & huge compression.

* Fast synthesis & easy parallelisation.

* Interactive controls for users
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BTF Editing

[Kautz et al. 07] - interactive editing of measured BTF outs et 1, ©ACH 2007]
= change materials properties by a g

set of physically non-plausible operators.
After changes, recompression

required
[Menzel & Guthe 09] — g-BRDFs — BTF parametrized into textures
= interactive modification of textures modifies appearance.
M Very fast and intuitive
Pixels are independent ABRDFs
2 no inter-reflection & sub-surface shadowing.
[Wu et al. 11] — mixture of weighted sparse parametric BRDF
models.
VI No assumptions about height-filed or mesostructure geometry )
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BTF Editing

Frequency Swap Strategy
[Haindl & Havlicek 09]

* Frequency factorization using
the Gaussian-Laplacian
pyramid.

* Markovian modeling of
multispectral Gaussian-
Lapacian pyramid layers using
the 3D causal autoregression
model (3DCAR).

* Synthetic (enlarged) Laplacian
pyramid swapping between
the input and target textures.
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BTF Editing
Near Regular Textures

[Haindl &Hatka 09]

_....Offline processing _____ Periodic
modeling

Periodic part]

. e L] -

PCA decorr.

ﬁ |—»{ Stochastic

FFT spectrum| rotation

detecti

Haind! & Filip: Materiais muycarane

Input texture

—H

3D CAR model

ANALYSIS SYNTHESIS

patameters

BTF Editing
Near Regular Textures

BTF Editing
Frequency Swap Strategy - Results

L]
Synthesized
textures
(combinations of
the previous)

BTF Editing
Near Regular Textures
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BTF Editing
Near Regular Textures

Fully automatic and extremely fast method due to
strict separation of the analytical and very efficient
synthesis steps.

Compression ratio > alternative tiling methods.

Texture enlargement & editing.
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Compound MRF Texture Model
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Conclusions on BTF Modelling

Modelling approaches overview

compres.  cnlarg. A/S spectral | Dlockwise | GPU [ paral. | unscen
scamloss | separated | synthesis | impl. data

GMRI 2D 1:10° Y ¥ - % N ¥ Y
GMRF 3D 1:10° Y Y + g N ¥ N
CAR 2D 1:10° Y Y o Y Y Y Y
CAR 3D 1:10° Y X + Y Y Y b
C-MRF 1:10° Y Y + Y Y Y Y-
LMP-tiled 1:10 Y ¥ + Y Y Y N
LMDC-til.  1:10? Y Y + 8 Y ¥ N
G/D/BM 7 Y Y + Y N | N N
hybrid 1:3 Y Y + A N N N
tilling 1:3 Y Y + Y Y N N
roller 1:3 Y pd + Y Y N N
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No ideal method exists. Generally:
— Better visual quality & sampling-based methods
— Higher compression & probabilistic methods

BTF Editing

Summary

VI Novel artificial textures with anticipated visual properties
VI Numerically efficient

Difficult modelling of unseen (abstract) meaningful textures
Difficult GPU implementation
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Image Sampling Approaches

* D.Heeger and J. Bergen, Pyramid Based Texture Analysis/Synthesis, Proc.
ACM SIGGRAPH, pp. 229-238, 1995,

* J. De Bonet, Multiresolution Sampling Procedure for Analysis and Synthesis
of Textured Images, Proc. ACM SIGGRAPH, pp. 361-368, 1997,

* Y.Xu, B. Guo, and H. Shum, Chaos Mosaic: Fast and Memory Efficient
Texture Synthesis, Technical Report MSR-TR-2000-32, Microsoft Res., 2000,

* A.A. Efros and W.T. Freeman, Image Quilting for Texture Synthesis and
Transfer, Proc. ACM SIGGRAPH, pp. 341-346, 2001.

* L. Weiand M. Levoy, Texture Synthesis over Arbitrary Manifold Surfaces,
Proc. ACM SIGGRAPH, pp. 355-360, 2001,
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Jump Maps, Proc. 14th Eurographics Workshop Rendering, pp. 90-96, 2003)
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Appendix

2D CAR Model

(MN=1)

p(Y |7.07%) = (2n0%) %

« a unit vector

( Vi)
V;ty(rfl)

1
Var-1y = ZAL;A{
k=1

o T
f/ril ‘{atzz(rfl) )

Vx(?‘fl)

r—1
/ T
Lrub(r—l) = § ALBk
k=1
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—1 o —w e
exp Ttr o T Va1 |
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Appendix

2D CAR Model — Parameters Estimation

Yr = ’7)(1' + e

v =la1,... ay) n= card(ly) #°
My = V;(/rl—l)V'L‘l/(Tfl)
52, = 2=
' B(r)
Vi) = Vigoty + Vi)
M-y = Va1 = Vg1 Vagr—ny Vawer—)
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Appendix

2D CAR Model — Optimal Model

M; — model
ma{p(M;[y 1))
J
d
Dj(r—l) = —5 In “/a:(r—l)l
Blr)y—dn+d+1
L Bomddet,,
&2 & Blr)—dn+d+2—i
+ 71117; {lnl"( 3
B 1111‘(,8(0) - dn;r d+2— z>}
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Appendix

Gaussian Mixture Model - Analysis

K
(Vi) = D pin(Viry | i 50)

i=1

exp {, (Viry = )87 (Vg — o) }
’ 2

D

(2m)

p(Ypy [0 Zi) =

P(Y(r} \,Um Zz‘) = H IJ(Ys \ N/L,s-,”i,s)
Vse{r}

K
1
L:m S WY pip(Yy i S0

Yiyivrel =l
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Appendix

Gaussian Mixture Model - Synthesis

p(Y;[Ye)

K
Z Wi(Ye) p(Ys | 1tis: 0is)
=1

w; p(Ye| i, 04)
Zjll w;p(Yo | 1y, o))
H p(lfs | i s Uz,s)

seC

Wi(Ye) =

P(YC“U‘HU!)
Ccir} se{r}-C
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Texture Appearance Visualization
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oozt scorar () 2;

Outline - Appearance Visualization

* Our Goal

* Steps to achieve it:
— Texture mapping
— World vs. local coordinate system transformation
— Local texture space
— Local texture space interpolation
— Measured directions interpolations
— Point-light vs. environment illumination
— Anti-aliasing

Haindl & Filip: Material Appearance

Texture Mapping

3D Geometry (v) + Per-vertex 2D texture coordinates (s,t)

-

Seamless
mapping Texture: Unwrapped
¢ triangle
3D=2D I mesh
Haindl & Filip: Material Appearance 0 >s 1 )

World vs. Local Coordinate System

RF()‘a"Al:’r%@i:@iaeva@v) .
— — Local coordinate space

@:Lw @Vw :@: Z @

w.c.s

World light and camera positions - 3D world coordinates L, V,, -
Coordinates in local texture space L, V ? )
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Local Texture Space

Geometry + texture mapping: v, s, t
Local texture space:

... averaged per-face normals
T..fromvaluesofv,s,t A
B ... crossproduct of N, T vy

, T, B form system transforming \ /2 T 7,“

world & local coordinates ]
Haind| & Filip: Material Appearance % 3

Local Texture Space

Obtaining illumination and view
directions in local texture space:

T, T, T

x % z

@@ L=| 8, B, B, |L,
&

\‘Q, e
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Local Texture Space (LTS) Interpolation

Per-triangle LTS Per-pixel LTS
1000 triangles

=
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Local Texture Space Interpolation

Barycentric interpolation obtains
weights as a ratios of
corresponding triangles areas.

A(p, va,vs3)

w =
! A(vi,ve,v3)
s = A(p,vi.va)
T AV, V2, V)
A(p,V].Vg)

wo =

A(Vl.VQ.Vg)
wy + w2 +ws=1

| .

T,J = wiT,+ woT, + waT,

Intra-triangle interpolation of T, B, N is B, = wiB;+w2B, + W3B,
supported in shaders of graphics HW. = WiIN; +W2 N, +W3 W |
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Barycentric Interpolation

Mobius 1827 [Coxeter 1969, Fauvel et al. 1999]

w [[(v2 —p) x (v5 — va)|

[[(ve = v1) x (v3 = vo)]

oy [[(vs —p) x (vi —v3)|

[[(va = v1) x (v = va)|

v, 0 = [(vi—p) x (va=v1)|
v, ’ l[(va = vi) x (vs = va)|

e If wy,ws and wy are all greater than zero,
p is strictly inside the triangle.

e [fw; =0 and the other two coordinates are positive,
p lies on the edge opposite v;.

o Ifw; =0and w; =0, p lies on vy.

e Ifw; <0, p lies outside the edge opposite v;.
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Measured Directions Interpolation

NO interpolation LTS interpolation LTS+BTF interpolation

Not needed by analytical models & reflectance for arbitrary directions

4
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Measured Directions Interpolation

wi1
9 BTF images interpolation

Value = W1 W;1 BTF;,+

- + Wyl Wi9 BTF, o+

+ Wy W3 BTF, 5+

+W,y31W;3 BTF 55 .
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Measured Directions Interpolation

« Interpolation & for each pixel (fragment) of rendered object,

e 3closest directions indices & interpolation weights can be

precomputed and stored, e.g. in cube-maps. P
o

* Easy implementation in graphics hardware

* For elevation angles higher than those

measured, a modification is required:
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Appearance Rendering

Appearance Rendering

* Total material radiance & emitted + reflected:

Lo(@,y,w0) = Logtaegl@,) + Los(w,y, )

* General rendering equation

L(z,y,w,) =/ BRDF(wi,w,)Li(x, y, w;) cos(8;)dw;
o8 \

Surface Illumination  llluminated
reflectance contribution area
foreshortening

4

llum./view
direction
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* Reflected radiance integration over hemisphere Mean pixel

luminance —

— Foreshortening term comprised in BTF data \ leather BTF

Lo, y,0,) = / BTF (2, y,wi,w0) Li(w, y,w:)de;
- Q;

* Rendering for a single directional-light
— & unrealistic

L,(a;,y,w,u) = BTF(H?,?/,W{,WI,)L,‘(TI)‘ yawi)
* Approximation by a finite number of directional lights

n;

L(z,y,wy) = Y BTF(,y,wi,w,) Li(#, y, w:)
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Point-Light vs. Environment lllumination

Environment lllumination
[Debevec 05, Median Cut ]

* Point-light * Environment Illumination
— ldealized, non-realistic — Realistic

— Fast computation — More demanding comp.

Anti-Aliasing

* Environment approximated by a set of point-lights

* Smoother images - convolution of pixel with lights
« Slower rendering - optimization techniques are available
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Implementation of
Appearance Visualization

* Artifacts caused by image rasterization
* Mip-mapping
—image downsampling to lower resolutions
— resolution selected from observer distance

Haind| & Filip: Material Appearance

* Some processing steps can (has) to be precomputed:
— Texture mapping
— Per-vertex Local texture space (LTS) on 3D object
— Measured directions Barycentric interpolation
* Other have to be computed per-pixel on the fly:
— Conversion illumination and view directions to LTS
— LTS interpolation across triangles (HW supported)
— reflectance model evaluation (BRDF, SVBRDF, BTF, ...)
— Environment illumination, anti-aliasing
* Benefit from parallelized graphics hardware
— Shading languages: OpenGL+GL Shading Language, CgFX,
— Higher level programming: CUDA, OpenCL 2
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GPU Online Shading Example

Interpolated BTF Visualization - Example

e Part of car interior

(interactive ~14 fps)

Haind| & Filip: Material Appearance

Haindl & Filip: Material Appearance

Michal Haindl  Jiri Filip

Institute of Information Theory and Automation
of the AS CR

Course

Advanced Textural Representation
of Material Appearance

Visual Quality Verification
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Motivation of Visual Verification

R
(e same I

Model — not identical
texture pattern
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Principles of Visual Verification

* Methods producing pixel-wise reproduction of
original data & standard metrics used in image
restoration (L1, L2, PSNR, SSIM, VDP).

 Statistical methods produce only similar texture &
measures defining visual similarity between two
different textures.

— ts based on second [Julezs 1962] and third orde
statisticsS tt 1993] (not metric).

— Approaches base
histograms, Gabor featur

steerable pyramids
.02],

Patter| aeta
Wacha & Haindl 07], [Filip et al. 10].

— However, the most reliable way is visual psychophysics.
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Principles of Visual Verification

* Comparing visualizations of original data vs. model
* Requirements:

— Fast similarity evaluation

— In agreement with human visual perception

— Ability to evaluate perceptual similarity of different textures
Outline

* Visual Quality Assessment Metrics
— Metrics L1, L2, PSNR, SSIM, VDP

* Visual Psychophysics K
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Image Quality Assessment Metrics

PSNR - Peak Signal-to-Noise Ratio

* Measure visual similarity of two textures
— Original vs. modified image (model)

* Advantages
— Automatic and fast results evaluation

— Provide similarity of pixel-wisely registered images &
difference maps

* Disadvantages
— Pixel-wise comparison, e.g., not translation invariant
— Do not provide general similarity of two different images
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* an approximation to human perception of
reconstruction quality in compression codecs

* Based on Mean Square Error (MSE):

m—1n-1
|

|1(i,5) — K (3,51

?T!.ﬂ.
i=0 j=0

PSNE = 10 -logw(

MAX?
MSE

* The same images - PSNR =« dB
* Acceptable range for video coding 30-50 dB
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SSIM - Structure Similarity Index Metric

Wangetal.04] « compares luminance, contrast, and structure
* local window (11x11pixels), Gaussian weighting
* range (-1,1), 1 —images are the same

Sx.y) = flIxy), c(xy), sx.y)]

2ty + Cy
w2+ pd + G

20,0, + G

foxy) = o2to2+C,
2407

cxy) =

Quepty + C1)20,y + G))
(12 + 12 + C)o2 + 02 + Cy)

Sx,y) =

Ci=KL? C=(KL? C=0C/2
Kl =0.01 and K2 =0.03
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SSIM - Structure Similarity Index Metrlc

Z. Wang, A. C. Bovil, Mocdzrn lmaz

Original Gauss. Noise Blur JPEG compr.

Contrast

ol
MSE 306 309 308

PSNR [dB]  23.3 23.2 23.2 23.2
SSIM 0.93 0.58 0.64 0.58
CW-SSIM 0.94 0.81 0.60 0.63

CW-SSIM — Complex Wavelet Domain SSIM
insensitive to: - luminance/contrast changes and small
geometrical distortions such as translation, scaling, and rotation
Haindl & Filip: Material Appearance

SSIM - different compression techniques

Original
s data
= =) %

>,

Per-view Per-view  per-view Entire Per-cluster MRF MRF GMRF

P0|Y"°"“a|5 Lafortune PCA PCA PCA 2D CAR 3D CAR

SSIMO077 075 099 097 095 047 041
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VDP - Visual Difference Predictor

[Daly 93] — Model of low-level human vision for a given viewing
conditions (screen resolution & size, observer distance)

* Basic concepts:

— Contrast Sensitivity Function

Contrast

— Cortex Transforms

— Visual Masking

Orientation Frequency

[Myszkowski 2001] scales
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VDP - Visual Difference Predictor

VDP Applications

* Target and mask image processing pipeline
[Mantiuk et al. 04]

Target
Image

Amplitude
Compression

Visual
Masking

Perceptual Difference

Mask
Image

Amplitude
Compression

- \_Y_) E—
compensate a non-linear decompose the predict perceivable
response of the human eye image into spatial differences in each
to luminance and the and orientational channel separately
loss of sensitivity channels W |

[Mantiuk et al. OIEEE 2004]
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[Mantiuk et al. 04] — HDR implementation
http://www.mpi-inf.mpg.de/resources/hdr/vdp/

LR —

Pixel visual difference
probability
P>75% P>95%

* Compression artifacts evaluation
* High-quality rendering stopping
* Adaptive mesh subdivision
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Visual Psychophysics

Materials

‘
Psychobﬁysics

Appearance Data

' Visualization|
Measurement Modelling
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Visual Psychophysics

* What we can get from it?
— Perceptual validation
— Fair Visual comparison of different methods
— Tune methods parameters in accordance with human
vision
— Help to find perceptually relevant computational model

Perceived
Intensity

| data |—~| stimuli |——| experiment | l
N
wedy
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Psychophysical Experiment Design

* Which visual feature or underlying parameter are
analyzed? & Stimuli preparation.

* What result are expected? What type of data
analysis we assume? & Data collection.

* Subjects: number, background, motivation (paid vs.
volunteers), age? & Consistency.

* What will be the subjects’ task?
Task formulation is crucial. 2 Consistency.
* Conditions of the experiment and its length?
Control as much factors as possible.
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Experimental Stimuli - static

= Static stimuli - comparing of images
— Yes/No answer (e.g. the same or different)
— Pick up different object
— Evaluate intensity in a given range (e.g. 0-10)
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Psychophysical Data Analysis

* Subjects results normalization and pooling (average,
median, etc.)

* Are the results statistically significant? & statistical
tests (ANOVA, Kruscal-Wallis, Cochran, etc.)

* Psychometric function & dependence of subjects’
response on stimulus intensity [Wichmann & Hill, 2001]

100

. misSTate 1y y(xa.B.rA) = y+(1—y—A)F (va.B)
Q

6w 2\ B

"‘g‘,«: F(.x,a.ﬁ):lfexp(f(a) ) x>0
gu

5 guess rate =1 1—y—2

o % v Yy, =o ln(lfpfit

Stimulus intensity

is the desir reentage (usually 50%
Haindl & Filip: Material Appearance pis the desired percentage (usua y 0%)

Prior Work on

Material Appearance Perception

* Studies of texture visual perception
— [Julesz, Nature 1981] — textons, 3" order stat. discrimin.
— [Long & Leow, IJCAI 2001] — perceptual dimensions
— [Padilla et al., Vis.Res. 2008] — perceived roughness
* Studies of BRDF visual perception
— [Pellacini et al., ICGGIT, 2000] — 2 perceptual dimensions
— [Flemming et al., JOV, 2003] — importance of environment
— [Ramanarayanan et al., TOG 2007] — visual equivalence
— [Vangorp et al., TOG 2007] — shape vs. material
— [Krivanek et al., TOG 2010] — environment vs. material
* Studies of BTF visual perception
— [Meseth et al., APGV 2006] — visualizations comparison
— [Filip et al., TOG 2008] — perceptual metric for compression
Filip et al., TAP 2009] — resampling & gaze analysis
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Texture Visual Psychophysics Examples

Example: Methods Quality Evaluation

* BTF compression methods comparison [Filip & Haindl,
PAMI 2009]

* Metric for BTF data reduction for BTF compression
improvement [Filip et al. TOG 2008]

* Study of BTF resampling effects [Filip et al. APGV
2008]

* Gaze analysis of BTF data [Filip et al. TAP 2009]

* Perceptual descriptor of BTF compression artifacts
[Filip et al. S+SSPR, 2010]
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Method: PCA RF Methad: LPCA BTF Methed: PCA BTF

8 10 12 N 5 8 14 17 ZU 10 20 30 a0 50
+view decion Numberof A componeete mber of A components

/;

PCA RI

\\% \\“e ’\‘z?

= SSES
A A s

[Filip & Haindl 09]

Haind| & Filip: Material Appearance [FI|Ip & Halndl IEEE PAMI 2009] o

PCA RE

k

/»
LPCA BTE  PCA BT

LPCA BIF  PCA BTI

Example: BTF Data Reduction

[Filip et al. ACM TOG 08]
Measured
BTF Sample

Reduction

Visual " .
Psychophysics

Haind| & Filip: Material -

Method Overview

Compression
methods

Quantization
Threshold?

Images
Quantization Sparse BTF

T Subset
z:‘ -l
Psychophysical Perceptual /

Experiment Scaling

Automatic Setting
For New Samples? @SIEURIE]

EEatlre The same Perceived

Fidelity
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BTF Vector Quantization

Psychophysical Experiment

* No. of preserved images vs. quantization threshold

2 6000#\ l?‘\‘::g D -%-alu

> WoONE . -6~ corduroy

E 5000 X A\ -+-fabric

L 4000 -8-leather d.

'c_n leather I.

- 3000 -b-impalla

5 2000 ~#"wood
-0-wool

£ 1000

6 9
Degradation threshold &
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* Goal: Find quantization thresholds giving the same
perceived fidelity as original data

3 objects, 3 types of illumination

240 stimuli (8x6x5), 11 subjects
* 20.1” LCD calibrated screen
* ‘Can you detect any differences in the materials?’
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Psychophysical Experiment

BTF Perceptual Subset

 Different objects
lllumination: -

-o-sphere

* Different illuminations

Object: D
1
-o-point
% + grace

075 '%irassila\n o’,/'(— o
05 SO

response
response
=}
o

———

+ tablecloth

075 bunny R
. 5 X

025— - £
S
0l 0
6 9

12 16 18 3
Degradation threshold &

6 9 12 15
Degradation threshold &
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* Numbers of preserved BTF images for estimated
thresholds

Original BTF data
6561 images

6000

5000

less than 30%
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Results — Psychophysical Thresholds

sample: alu £€=6.0
Rendering using:
all 6561 images 544 images subset
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Psychophysically-Based Metric

Set of linear
equations: =

New threshold:
Eoy = 8O3

=z }
Bs =p0|nt

< grace

¢ [Igrassplain
z AVG

k]

k]

&

<3

3

Haind| &




Validation Experiment

Applications — BTF Compression

* 6 additional BTF samples, 18 subjects, one shape

* scaling value s from the previous experiment.
— Automatic thresholds setting metric
— No need to perform psychophysical experiment again

o

mpoint
mEgrace
[Igrassplain
JAVG

degradation threshold ¢

8
6
4
2
o]

Hamd\&ﬁ\@%&nalApZ&%ce 24% 32% 15%

5% of images

LPCA LPcA+ (€)

Measured
BTF

Compression
[Muller03]

dependent
pixels
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Applications — BTF Compression

images
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Applications — BTF Sampling

Distributions of
viewing directions
over hemisphere
for fixed
illumination
(corduroy, leather)
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Study of Resampling Effects
[Filip et al. APGV 2008]
* Stydy of uniform BTF resampling Effects:

e -

[Filip et al. 09

* Subjects responses & resampling is less apparent:
— in azimuthal angles than in elevation ones
— in illumination directions than in view directions

— for environmental illumination & less glossy samples ]
Haind| & Filip: Material Appearance 5

Visual Psychophysics

Materials

Eye-Tracking

\NE] 4:
Psychophysics

Abpearance Data

Measurement Modelling
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How to set compression parameters automatically to
achieve high compression and good visual quality?
Material Samples

Gaze Data Recording (Eye-Tracking)

Task: Which one ' 3 m 77 Stimulus image
! —

1. Gaze fixations
locations a

. " . = durations : -

del;/.lce (T:)bn x50) RS B K 2 Hot-spot maps Degradation Filters

- Binocular ;

R B 3.Visual search . ‘ Psychophysical Experiment
Infrared-based ” patterns i .

is different?

Gaze recording

Perception vs. Statistics Correlation Example: Gaze Analysis of Materials
[Filip et al. SSPR 2010] [Filip et al. ACM TAP 2009]

- Average Subjects Responses Tested statistics: * Analysis of Gaze Data for Different amples
« structure similarity index (SSIM) N
Average subjects recognition success rate « visual diference predictor (VDP) l
= « local binary patterns (LBP) \l -
¢ + Gabor features (GF) — Eye Fixations Data of 11 subjects -> PCA
S « causal auto-regressive model
a . (CAR) . . . ® ¥
alu fabric leatherl. wood wool
- Best Predictor (CAR) Responses Conclusions — Fixation variance coded as length of ellipse axes p etal. 09
2 Descriptor CAR (2D, GP 1, 102) + CAR and LBP — best in detection — Orientation in direction of 1. principal component

~

- T of subtle texture differences with
I Es respect to human judgements. @ @ @ @ @
_ Oc |1 A
- - I +Pixel-wise metrics (SSIM, VDP) .5 f N -
' f J are not translation invariant, i.e. : ant_o main axis =
0 B Tabic leatherl weod wool | nOt suitable. ) illumination gradient @ @
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Feature Value
N
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Conclusions on Visual Verification

Example: Gaze Analysis of Materials
[Filip et al. ICPR 2010]

All elevations Fixated . . . . . .
Textured combinations clevations * Applicable metrics exist for pixel-wise comparison.

) ® | * Lack of reliable general texture similarity metric

* Visual Psychophysics allows:
— Arbitrary customized stimuli.
— Time demanding & expensive, but can provide valuable
results.
— Enables to find optimized parametric setting.
— Useful for identification of proper statistical features &
this can be difficult.
* Applications shown
— More efficient compression and visualization
— Selective material sampling
— Material dependent visual attention prediction

object

[Filip et al. 10] Haindl & Filip: Material Appearance oo
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BTF Applications

Analysis

Visual Scene Interpretation
* Un/semi/supervised

image segmentation
« V(AR
* Study of human perception of materials
* CBIR - illumination and view invariant image retrieval
* Medical applications (dermatology, ophthalmology, ...)
* Remote sensing, security, etc.
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BTF Applications

Illumination Invariants

SWUGESS

Accurate Visualization

* Virtual design (architecture,
car industry, etc.)

* Visual safety applications

* Cultural heritage
preservation

* Film & games industry

* 3D information systems
(medicine, museums)
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{/r = BY, ‘ lllumination, brightness & spectrum invariants ‘
1. trace: A, m=1,... 9K 2/3D CAR [Vacha&Haindl09]
2. cigenvalues: vy, of Ay, m=1,....91K,

i=1...C

3o 1+ 21V, 7, .

1. og X, (Y — 4Z)T AL (Y, —42,)

5oy /5 (=) AT (=)

# is the mean value of vector Y.,
2 " 2
Vo a5 % (Yos = 45Zr;)

AR TURY (3';2 (Ym)z .

~3
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Illumination Invariants

lllumination Invariants
Example CUReT recognition

2D GMRF

o(I)| 2(h) |-
B = (j o3
. -1l
Baj = ln<ubs|V;2|abs|l/;(z{j)\ lﬁ
Bs; = In ( abs Vm?jHoﬂ”’ \]\’”)

Pog = In ( abs‘VwHVyy,jr”)
Bsj = Vi 0;2 |I|71
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Correct classification [%] using 4 random training images per
material:

method accuracy | vector size
MRS-LINC 67 600
Opponent Gabor features 68.7 252
LBPg 1183, grey 66.9 512
LBPs 1453, RGB 70.9 1536
LBP{;,, RGB 68.7 729
2D CAR-KL, L, 75.6 260
[emyk]0.05,0.15,0.0 2D CAR-KL 6+3. L, 77.0 392
3D CAR 643, L; 72.4 344
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Illumination Invariants

MInvariant to illumination brightness and spectrum.
MIRobust to illumination direction.

VIFast implementation.

VIOnly one training image per material is required.
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Unsupervised Segmenters

MRF spatial models (3/2D CAR/GMRF)
Y'r = ZSGIT ASYI‘—S + & \

Parametric GM model

K
p(O;) = ZP;I’("’r\ViaEi)-,

L
\v|—g .
e el

p(O: |, Ta)

[Haindl et al.09a,b]
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Mammography ROI

[Flaind) 2t 2l,07,08]

Unsupervised Segmentation

Problem Formulation:
* Unknown number of image classes.
* No training sets.

* lllumination spectrum, brightness, and position are unknown
and variable.

* Realistic conditions.

Solution:

* Markovian texture representation.

* lllumination invariant parametric space.

* Gaussian mixture based parametric space segmentation.
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Prague Texture Segmentation Benchmark
http://mosaic.utia.cas.cz

mosaic ground truth  AR3D+EMIii AR3D+EM HGS E HGS C

bbbt
(el Ld

o
L m—
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Unsupervised Segmentation

M Unsupervised & unknown number of classes.
MInvariant to illumination brightness and spectrum.
VIRobust to illumination direction.

VIGeneralization to multi-segmenters systems.
IMRF based features.

VIFast implementation.

M Outperforms several alternative segmenters on
extensive benchmark tests.
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Content-Based Image Retrieval

tile retrieval http://cbir.utia.cas.cz/tiles/

query L similar texture
similar colours
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Virtual Representation of 3D Objects
Car Headrest Example

Measured geometry
(Konica-Minolta Vivid 9i)
+ 2 BTF samples

Original headrest
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Architecture

* Virtual Designing in
Architecture
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Virtual / Augmented Reality

* Virtual design (car / aircraft industry)
* Architecture

* 3D information systems

* Cultural heritage preservation
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Architecture

* Virtual Designing in Architecture

Courtesy of R ct.org
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Car Industry

Virtual Interior Design

* Virtual Designing in Automotive Industry

Courtesy of RealReflect.org &
University of Bonn
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Safety

National Gallery - Department of Modern Art

3D Information System

» Safety Simulations

Courtesy of RealReflect.org & Univesity of Bonn
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National Gallery - Department of Modern Art

* 3D interactive information system

« exhibition route planner (thematic &
time constrained)

= distributed exhibition editor

* web gallery presentation

« traffic optimizer

« elderly and disabled visitors support

« safety simulator (evacuation
rehearsal)
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* eight floors + two subterranean, two large halls
* among largest functionalist buildings in Europe

* built 1925 - 1928 (Old¥ich Tyl & Josef Fuchs), 1974
destroyed by fire, 1995 reconstructed

* 19.-21. century art permanent exhibition on 13 500
F g

National Gallery - Department of Modern Art
Model Exhibition Route

Cultural Heritage Preservation

[Royal Library Sweden]

Codex

(1200 AD PodlaZice, Bohemia,
1648 stolen by Swedish army
from Prague)

[Malzbender etal. OACM 2001]  peo-Sumerian tablet (20008c)
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Conclusions on BTF Applications

Limited size of measurements (size, materials,
resolution)

Limited BTF space quantification
Unmanageable size of BTF database
XIComputationally demanding

nD RF theory unsolved problems

VIPhysically correct material representation
IDescriptive representation — optimal analysis
VITremendous application potential
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Tutorial Conclusion

BTF is natural visual representation progress
binary — gray-scale — multi-spectral = BTF — ...

BTF offers ground-breaking image analysis &
synthesis improvements

BTF representation is a near future of computer
vision & graphics & pattern recognition
applications.

4
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